
Towards full NTFS semantics in
Samba

Andrew Tridgell
tridge@samba.org

About Samba

� Started in 1991 as a side project in my spare time

� Now have about 25 "Samba Team" members

� Ported to a wide variety of OSes

� Massive user base now built up (millions of
installations?). Over 25 books published.

� Sometimes referred to as the 'stealth weapon' of the
Linux community

� Developed using analysis of network traces

� Currently about 350k lines of code

� Used in many commercial products, especially NAS

Semantic Conversion

� One of the major challenges facing NAS boxes is
the problem of 'Semantic Conversion'

� Each of the protocols that the box supports has a
quite different set of semantics, and these
semantics are usually quite different from the
native semantics of the local operating system
(often Linux)

� For 'correct' operation the server must map the
expected protocol semantics onto the semantics of
the local OS, and this mapping must be fast!

Semantic Conversion : pt 2

� The main semantic conversion problems are

� locking

� ACLs

� case insensitivity

� short/long names

� delete/rename

� There are two broad approaches to each of these.
Either map the required semantics onto the local
OS semantics or add 'parallel semantics' into the
local OS

Byte range locking

� A good example of semantic conversion problems
is byte range locking.

� POSIX locks are not stackable, CIFS are

� POSIX locks have a fixed lock context

� signed/unsigned lock offsets

� POSIX locks are advisory, CIFS mandatory

� Is byte 6 locked after this sequence?

� lock(1,10)

� lock(5,8)

� unlock(1,10)

Case insensitivity

� Applications running on CIFS clients expect file
systems to be case insensitive, whereas Unix
systems are case sensitive. How do you provide
case insensitive semantics on a case sensitive
operating system?

� Lets walk through the worst case - how do you
prove that the file /home/test/data/test.dat doesn't
exist?

Case insensitivity - current method

� To prove that /home/test/data/test.dat doesn't exist
you need to:

� open '/' and search for names that match "home"

� open '/home' and search for names that match "test"

� open '/home/test' and search for "data"

� open '/home/test/data' and search for "test.dat"

� this can cost hundreds of system calls

� Some optimizations for common cases are
possible

Case Insensitivity - pt 2

� The alternative is to add case insensitive support
directly into the kernel. To do this on Linux you
need to modify two main kernel subsystems, the
low-level file system and the dcache.

� In the simplest case we need to:

� change the file system to use strcasecmp() when
looking up names in directories

� change the dcache hash function to be case insensitive

� change the dcache comparison functions to use
strcasecmp()

� Things soon get a bit more complex!

Case Insensitivity - XFS

� The on-disk directory format in XFS is a hash.
This means that we need to change the on-disk
format when we change to a case insensitive hash.

� For backwards compatibility we need to mark
each directory in XFS as being either case
insensitive or case sensitive. The directory hash
function is then chosen based on this flag.

� Other major problems include:

� case insensitive in what character set?

� per-process case insensitivity (for NFS + CIFS)

� negative dentry problems!

More semantic conversion

� The other major points of semantic mismatch are

� File ACLs (access control lists)

� short/long names

� delete/rename semantics

� With each of these we have the choice of
semantic mapping or parallel access. Usually
parallel access is preferable, but it is often much
more complex to implement

Proposal - a new Samba VFS

� The current Samba VFS allows loadable modules
to replace all IO functions at the Posix level

� used for virus checkers, trash can etc

� The current VFS also contains loadable methods
for NT ACLs, but doesn't contain any operations
for oplocks, share modes, 8.3 names or case-
sensitive handling

� A new Samba VFS system is needed that allows
all the CIFS->Posix mappings to be replaced

Move the VFS access points

� The first step is to move the VFS access points
much closer to the top of the CIFS stack.

� This means that the VFS entry points will no
longer be Posix functions like open() but CIFS
functions like NTCreateX().

� This will also greatly reduce the distance between
the parsing of a CIFS packet from the network
and the VFS entry point.

A POSIX backend

� The next step is to rearrange the existing code to
form a new VFS backend based on the current
CIFS -> Posix mapping.

� This is needed to keep Samba working while the
new VFS is being developed.

A CIFS Backend

� The first backend that I plan on developing is a
CIFS->CIFS backend. This will use a remote
CIFS server to provide the storage for the VFS
backend.

� The idea is to provide an 'ideal' backend to ensure
that the new VFS can handle the full range of
CIFS semantics.

A reference backend

� Another critical portion of the new VFS will be
the creation of the 'reference backend'. This
backend will aim to provide close to 100%
CIFS/NTFS semantics, but will not attempt to
integrate with the OS or be efficient.

� The plan is to store all files with fixed
permissions and ownership. Each file will have a
corresponding record in a database, with the
record containing all the CIFS/NTFS meta data
needed for full CIFS semantics. The meta-data
will include both static data (like ownership and
ACLs) and dynamic data (like oplock state).

Test suites

� One we have the reference backend in place it
should be possible to create dual-server test suites
that test much finer detailed CIFS compliance
with Windows than is currently possible.

� This will give us a basis for validating our CIFS
protocol behavior, and will give a good basis for
other groups to create a backend that takes
advantages of specific attributes of more
specialised filesystems.

� The 'dual-server' methodology used in other
Samba testsuites will be used

Dual-server testing

� As CIFS lacks a comprehensive protocol
specification we use dual-server testing to
validate the code

� A dual-server test attaches in parallel to both a
reference server (such as Win2000) and a test
server (such as Samba)

� The test code does either exhaustive or
randomized case generation and looks for any
differences in the replies from the two servers

� A binary search back-tracking system is used to
find the divergence point

Other major development tasks

� The new VFS is only one small part of what is
going on in the Samba world

� Active Directory integration

� Domain controller development

� Internationalization

� SPOOLSS/printing developments

� better management tools

