Towards full NTFS semanticsin
Samba

Andrew Tridgell
tridge@samba.org



About Samba

- Started in 1991 as a side project in my spare time
- Now have about 25 "Samba Team" members
- Ported to awide variety of OSes

- Massive user base now built up (millions of
Installations?). Over 25 books published.

- Sometimes referred to as the 'stealth weapon' of the
Linux community

- Developed using analysis of network traces
— Currently about 350k lines of code
- Used in many commercial products, especially NAS



Semantic Conversion

* One of the major challenges facing NAS boxesis
the problem of 'Semantic Conversion'

e Each of the protocols that the box supports has a
guite different set of semantics, and these
semantics are usually quite different from the
native semantics of the local operating system
(often Linux)

* For 'correct' operation the server must map the
expected protocol semantics onto the semantics of
thelocal OS, and this mapping must be fast!



Semantic Conversion : pt 2

* The main semantic conversion problems are
- locking
- ACLs
- case Insensitivity
- short/long names
- delete/rename

* There are two broad approaches to each of these.
Either map the required semantics onto the local
OS semantics or add 'parallel semantics into the
local OS



Byte range locking

* A good example of semantic conversion problems
IS byte range locking.
- POSIX locks are not stackable, CIFS are
- POSIX locks have afixed lock context
- signed/unsigned lock offsets
- POSIX locks are advisory, CIFS mandatory

* |s byte 6 locked after this sequence?
- lock(1,10)
- lock(5,8)
- unlock(1,10)



Case insensitivity

e Applications running on CIFS clients expect file
systems to be case insensitive, whereas Unix
systems are case sensitive. How do you provide
case insensitive semantics on a case sensitive
operating system?

e Letswalk through the worst case - how do you
prove that the file /home/test/data/test.dat doesn't
exist?



Case insensitivity - current method

* To prove that /nome/test/data/test.dat doesn't exist
you need to:

- open '/' and search for names that match "home"

- open ''home' and search for names that match "test"
- open ''homeftest' and search for "data’

- open ''homeftest/data and search for "test.dat"

e thiscan cost hundreds of system calls

e Some optimizations for common cases are
possible



Case Insensitivity - pt 2

* The aternative isto add case insensitive support
directly into the kernel. To do thison Linux you
need to modify two main kernel subsystems, the
low-level file system and the dcache.

* |nthe simplest case we need to:

- change the file system to use strcasecmp() when
looking up names in directories

— change the dcache hash function to be case insensitive

- change the dcache comparison functions to use
strcasecmp()

* Things soon get a bit more complex!



Case Insensitivity - XFS

* The on-disk directory format in XFS s a hash.
This means that we need to change the on-disk
format when we change to a case insensitive hash.

* For backwards compatibility we need to mark
each directory in XFS as being either case
Insensitive or case sensitive. The directory hash
function is then chosen based on this flag.

e Other major problems include:

— case insensitive in what character set?
— per-process case insensitivity (for NFS + CIFS)
— negative dentry problems!



More semantic conversion

* The other major points of semantic mismatch are

- File ACLs (access control lists)
- short/long names
- delete/rename semantics

* With each of these we have the choice of
semantic mapping or parallel access. Usually
parallel accessis preferable, but it is often much
more complex to implement



Proposal - anew Samba VFS

 The current Samba VFS allows | oadable modul es
to replace al 10 functions at the Posix level

— used for virus checkers, trash can etc

* The current VFS aso contains loadable methods
for NT ACLSs, but doesn't contain any operations
for oplocks, share modes, 8.3 names or case-
sensitive handling

* A new Samba VFS system is needed that allows
all the CIFS->Posix mappings to be replaced



Move the VS access points

* Thefirst step isto move the VFS access points
much closer to the top of the CIFS stack.

* This means that the VFS entry pointswill no
longer be Posix functions like open() but CIFS
functions like NTCreateX().

* Thiswill also greatly reduce the distance between
the parsing of a CIFS packet from the network
and the VFS entry point.



A POSI X backend

* The next step isto rearrange the existing code to
form anew VFS backend based on the current
CIFS -> Posix mapping.

* Thisis needed to keep Samba working while the
new VFS is being devel oped.



A CIFS Backend

Thefirst backend that | plan on developing isa
CIFS->CIFS backend. Thiswill use aremote
CIFS server to provide the storage for the VFS
backend.

* Theideaisto provide an'ideal' backend to ensure
that the new VFS can handle the full range of
CIFS semantics.




A reference backend

* Another critical portion of the new VFESwill be
the creation of the 'reference backend'. This
backend will aim to provide close to 100%
CIFS/INTES semantics, but will not attempt to
Integrate with the OS or be efficient.

* The planisto store al files with fixed
permissions and ownership. Each file will have a
corresponding record in a database, with the
record containing all the CIFS/NTFS meta data
needed for full CIFS semantics. The meta-data
will include both static data (like ownership and
ACLs) and dynamic data (like oplock state).



Test suites

* One we have the reference backend in place it
should be possible to create dual-server test suites
that test much finer detailed CIFS compliance
with Windows than is currently possible.

 Thiswill give usabasisfor validating our CIFS
protocol behavior, and will give agood basis for
other groups to create a backend that takes
advantages of specific attributes of more
specialised filesystems.

e The'dua-server' methodology used in other
Samba testsuites will be used



Dual-server testing

* As CIFS lacks a comprehensive protocol
specification we use dual-server testing to
validate the code

e A dual-server test attaches in parallel to both a
reference server (such as Win2000) and atest
server (such as Samba)

* Thetest code does ether exhaustive or
randomized case generation and looks for any
differences in the replies from the two servers

* A binary search back-tracking system is used to
find the divergence point



Other major development tasks

* The new VFESisonly one small part of what is
going on in the Samba world

— Active Directory integration

— Domain controller devel opment

- Internationalization

- SPOOL SS/printing developments
— better management tools



