Windows NT - A Linux
Perspective

By Jeremy Allison

Sary /Ljﬂ/
y

Development Team

email: jra@samba.org

Why is a Samba Guy doing
this ?

® |'ve worked on all versions of NT, from the Win32
beta CD onwards.

® | have ported a lot of UNIX software to Windows
NT.

® The Vantive server, and a portable thread library.
® The ONC/RPC library part of the Vantive client.
® Kerberos 5.

® One of the Cygwin32 developers.
® Samba interoperability teaches a lot about NT.

® \We can learn from NT.
® SVLUG made me do it!

Comparison of Linux and
Windows NT

Windows NT Linux

User application j

'

[Shared libraries

t libc.so f]

| RRECEEELE | ERRGRGREEEELE Y
KERNEL

Pageable SMP kernel Non-Pageable SMP kernel
with kernel threads with kernel threads

Little Known NT facts

® Windows NT is the only mass market OS with a
completely undocumented system call interface.

® Win32 layer sits on top of this undocumented
layer.

® As do the other subsystems (POSIX and OS/2).

® Microsoft "system" applications call underlying
kernel API (hidden in NTDLL.DLL) as needed.

® Examples include event logger, winlogon process, the
Windows shell.

® Most "general" Microsoft applications eg.

SQLserver use Win32, most of the time.
® Unless they need to do something no one else can.

A brief comparison of the Win32
and POSIX API set.

® WIin32 is very complex.

® Changes with every service pack release.

® Inconsistent design (error returns from API's are
different in many cases, NULL or -1 meaning an error
for example).

® Provides rich functionality (multimedia API's and high
level Internet API's for example).

® Poorly documented (no real "spec” - the help pages
do not cover many "“corner” cases).

® |s designed to be a "one-way" porting process.
Difficult (although not impossible) to take Win32 code
and move to other API sets.

® Non portable between different Windows
implementations.

A brief comparison of API's
(continued).

® POSIX APl's are limited.

® Design by committee means lowest common
denominator API's.

® Some amazingly stupid decisions written into the spec
(locking with multiple file descriptors for example).

® \Very slow to accept change (is this good or bad ? :-).
® Fragmented implementations means autoconf
needed.
® Most new design done in libraries (X, GTK, Qt).
® Not all libraries available on all POSIX platforms (the
horror of Motif, for example).

® Vendor "holy" wars over library interfaces (GTK vs Qt
vs Motif).

More little known NT facts.

Windows NT is a multi-user OS !

/Wmdow Station

Screen Save\

6gon Deskth

Winlogon.exe

Display |

Desktop

User selected
screen saver.

N _/

N

_/

| Mouse
Keyboard |

User deskto\

(Default)

Userinit.exe

\Explorer.exe

_/

Window Stations

® A "Window Station" is like a DISPLAY device in X

® Theoretically multiple "Window Stations" could be
attached to a Windows NT box to provide multi-
user service.

® (Cytrix and others hacked the NT kernel to do this.

® API's to control desktops and Window Stations live in
NTDLL.DLL. Not exposed. VNC could use these.

® \Windows NT services (equivalent to daemons)
also have their own Window Stations.

® This is poor design due to Windows "message pump"”
programming. Should not be needed for daemons
(daemons don't use X for messages).

Little known NT facts
(continued).

® The Windowing system was originally designed
to be remotable, in NT 3.1 -> NT 3.51.

® User threads making graphics requests were
paired with a thread in the CRSS.EXE process,
that would access the hardware on their behalf

(like a MT-X Server).

® Shared memory calls (LRPC) were used to
transfer graphics requests to the paired
CRSS.EXE threads.

® C(Context switch still required.
® There is a Win32 batch flush call, like XFlush().

Windowing in the kernel - a
good idea ?

® NT 4.0 put large parts of the CSRSS.EXE into
the kernel for desktop speed.
® This was the point that NT stability became a real

ISSue.

® '"Inside NT", 2nd Edition claims this had no effect
on stability, as a CSRSS.EXE crash always
caused a system reboot, as the WIin32 display is
essential even for services (daemons).
® Thisis untrue. NT prior to 4.0 could have a display

problem and file and print services would keep on
running, NT4.0 and above will blue screen.

® Samba became very popular around NT4.0.....

Windows NT configuration - the
Registry concept.

® The Regqistry concept (IMHO) is a very powerful
one.

® Allows all apps to get/set name/value pairs that
control system configuration using a (reasonably)
simple API.

® Security (complex ACLs) can be set on each value
individually. User account info (passwords) stored
here.

® Maintanence of UNIX /etc files programatically is a
nightmare in comparison. No common API, no
common data format. Historical reasons.

® Look at Linuxconf and the KDE configuration editors.
They are trying to map the registry complex onto a
nest of files that have different formats.

The NT registry (continued).

® NT equivalent of /proc file system appears in a
reqgistry area. Name/value pairs can be created
on query (this is how NT perfmon works).

® The problem with the registry is that the
implementation sucks !
® Uses MS Jet database engine. Same engine as used

in MS-Access that regularly corrupts Exchange and
WINS databases.

® FEach reqistry "hive" (chunk-o-data) is a single Jet db
file stored in WINNT\System32\config.

® Old Windows 3.1 ".INI' file mechanism actually was
more robust, as problem files could be fixed by hand.

UNIX User and Group account
mechanisms.

® UNIX has a simple 32-bit user id to represent any
user. Likewise a 32 bit group id to represent a
group. User and group number spaces are

disjoint.
® "Foreign” users (from another machine) cannot

be distinguished from a local user if their uid is
the same.

® YP/NIS and NIS+ are simply a way of getting a group
of UNIX machines to agree on a common mapping for
these numbers to user/group names.
® On-disk storage of ownership is only the owning
uid and gid.

Windows NT User and Group
account mechanisms (SIDs).

® NT uses a "SID" (security identifier) to store user
and group identities. NT machines also have

SIDs.

® SID number space is flat (users / groups /
machines) all allocated from the same number

space.

® Unlike uids, SIDs have a complex structure. A
typical SID looks like :
® S-1-5-21-<32 bits>-<32 bits>-<32 bits>-<32-bits>
® The first'1'is the revision level of the SID.

® The'5'is the "indentifying authority" (ie. who created
it). 5 means an NT system (Samba uses this also).

NT SIDs (continued).

The '21' is the sub-authority. 21 means accounts
created by the Administrator (ie. not built in
accounts). Well, mostly :-).

The next 96 bits are a Domain or Machine ID.

® All NT machines have a 96 bit unique identifier. This
fact is significant and will be covered in a later slide.

The final 32 bits are a "RID" (relative ID). This is
the actual user or group ID within the 96-bit
unique identifier.

The overall SID design is unusably complex (and
almost no programmers understand it).

Windows NT Domains.

® An NT Domain is a collection of machines that
can share a single account database.

® Almost identical to a YP/NIS setup. NIS+ is a closer
match due to the crypto and machine accounts.

® The machine holding the primary account
database is called a PDC (Primary Domain
Controller). This is close to an NIS master.

® BDCs (backup domain controller) contain read-only
replicas of this database. This is similar to an NIS
slave.

® PDCs and BDCs have no separate local account
database (ie. no local /etc/passwd or /etc/group).

Windows NT Domains
(continued).

® The 96-bit machine identifier in a SID is used as
the Domain identifier when the machine issuing
the SID is a PDC.
® NT accounts are usually written in text form as :
DOMAIN NAME\user name.

® The "DOMAIN_NAME" part represents the 96-bit
domain identifier.

® The "user _name" part represents the 32 bit RID within
that domain.

® Non PDC machines can also have local accounts
and groups: MACHINE_NAME\user name

® Equivalent to a local /etc/passwd or /etc/group.

Windows NT Domains
(continued).

® A users SID completely identifies the creating
machine/domain, as well as the user within it.

® As SIDs are stored in NT ACLs and as the owners of
files/directories (in NTFS) then there are no problems
with uid/gid collisions from different machines.

® Due to the flat number space a Group SID can be the

owner of a file (ie. groups can own files instead of
users).

® To perform a SID to name lookup for an unknown
SID, the machine/domain identified by the 96-bit
machine id must be on line.

® The passwords associated with Machine SIDs
are used to create a secure channel (more later).

Windows NT Security Model.

® \When a user logs onto an NT machine, their SID,
as well as a list of the group SIDs they belong to,
are stored in a kernel data structure known as
an "access token".

® An access token is associated with every process.

® Threads share their owning processes token, unless
they are impersonating a user (more on this later).

® This is identical to the process credentials in the Linux
task_struct structure.

® This group list is fetched from the account database
(local account) or from the PDC/BDC (domain
account).

Windows NT Security Model
(continued).

® \Win32 has no generic setuid call.

® The MS security model is predecated on a server
process receiving an IPC communication from a
process running under another user context, and

allowing the server process to impersonate the
caller.

® MS claim is that the super user (Administrator)
cannot arbitrarily take on another users context.

® This is untrue. Given access to the users hashed
password stored in the registry (the equivalent to the

password field in /etc/passwd or /etc/shadow), a user
can be arbitrarily impersonated.

Windows NT Security Model
(continued).

® All (NT4.x and below) NT security is based upon
the NTLMSSP challenge/response protocol.

® This includes SMB/CIFS, RPC (including all remote
admin services for NT and BackOffice apps such as
Exchange, IS, SQLserver), MS-CHAP, the Outlook
POP/IMAP services, their PPTP VPN solution and
DCOM.

® NTLMSSP consists of an 8 byte server challenge
being DES encrypted by the hash of the users
(or machines) password and returned.

® This protocol is tunneled onto other protocols
(IMAP) using SASL and other Internet standards.

Windows NT Security Model
(continued).

® Once the NTLMSSP exchange is completed, the
receiving kernel creates an access token
representing the remote’ user.

® The Domain/Machine and user names are included in
the NTLMSSP exchange so the user SID and group
SID list can be looked up by the receiving machine
and set inside the kernel access token.

® This is the token that can be attached to a thread by
use of the "ImpersonateXXX" Win32 API calls.

® Under Linux, a kernel thread can also do a seteuid
that will only affect itself (not the owning process).
However this is not defined by the pthreads standard
and should not be relied upon for portable code.

Windows NT Security Model
(continued).

® NT Domains can be a 2 level heirarchy (one
domain "trusts" another).

® NTLMSSP authentication over encrypted MS-RPC is
used to pass the challenge sent from the issuing
server and response from the client up to the
PDC/BDC, which then forwards it to the trusted
PDC/BDC.

® This is most similar to Kerberos 5 (which explains the
Win2000 choice).

® Fundamental flaw designed into the NT Domain
security model (known initial password) makes NT
Domain security very weak.

Comparing UNIX and NT
"pluggable” authentication.

® Linux provides a replacable login program, and
also replacable "PAM" modules underneath it.

® Linux also allows the user and group password
database to be replaced via the nsswitch
mechanism in libc (this is how YP/NIS is done).

® Microsoft claim that the "GINA" (Graphical
|dentification and Authentication) DLL
mechanism is also a replacable module of equal
power.

® This is untrue.

® GINA allows additional authentication to be done at "interactive"
logon time only. You cannot replace the token creation function at
the GINA level - an MS underlying mechanism must be in place.

The GINA shell game :-).

® The real authentication mechanism in NT is a
.DLL known as the LSAauth (Local Security
Authority authentication). This is also a pluggable
mechanism.

® |tis intentionally undocumented.

® There is a mandatory DLL here, called MSV1 0
subauthentication DLL. No documentation on
replacing this exists.

® My speculation on the reason for this is that an open
LSAauth API would allow an NIS or NISplus
authentication mechanism to be integrated into
Windows NT, such that an NT PDC would no longer
be needed in most UNIX environments.

Windows NT Access Control (NT
ACLs).

® All securable 'objects’ in NT can be protected
with an Access Control List (ACL).

® Under UNIX all securable 'objects' are
represented in the filesystem (mostly, SysV
shared memory is an exception) and use the file
system security user/group/world to control
access.

® NT has separate namespaces for all securable
'objects' that may be used for IPC. Often,
inconsistant Win32 calls are used to set/get
security information on them (bad API design).

NT ACLs (continued).

® Securable 'objects' have a structure called a
"security descriptor" attached to them. It contains
an owner SID and group owner SID (for POSIX)
and two ACLs, one to determine access (DACL),
one to determine auditing (SACL).

® NT ACLs can be arbitrarily complex, but they
have a canonical form (deny list first, followed by
allow list).

® |t is prgramatically easy to create file ACLs that
the Explorer GUI cannot display.

NT ACLs (continued).

® Each entry in the ACL (Access Control Entry -
ACE) contains a type (allow or deny), a bitmask
specifying what permissions are covered, and a
SID to which these permissions apply.

® As they can be any length dealing with them
programatically is difficult.

® They have two forms, an "in memory" form, and a
linearized form known as "SELF RELATIVE" that is
used to store them over the network or onto
permanent storage.

® There are two sets of bits in the bitmask, a "generic"
set and a "object specific" set. The generic set is
mapped to the specific set by an API call.

NT ACLs (continued).

® They are extremely flexible (maybe too much so)
and can be set to be inherited on creation of an
'object’ within a ‘container’ (this usually means a
file or directory within a file system).

® POSIX ACLs are unfortunately not a standard
over any of the UNIX varients. This makes writing
portable code very difficult.

® However, NT ACLs are not implemented on
Win9x or WinCE and mostly ignored by Microsoft
applications (MS Office) so portable Windows
ACL code is also very difficult.

Remote Access and
Administration.

® The UNIX remote administration mechanism is
designed around the philosophy of providing a
remote tty interface.

® This is extremely powerful - no GUI tools needed,
remote administration can be done over very low
bandwidth links.

® NT remote administration is all designed around
MS RPC calls (more on these later).

® By NT4.x1 believe all needed administration can be
done remotely (even loading of new services onto a
remote machine).

® GUI tools designed around permitted RPC calls - if no
call was designed, the operation cannot be done.

Remote Access and
Administration (continued).

® Problems with the NT model are that a large set
of functionality needs to be working continuously
for remote admin to work (networking stacks,
RPC binding mechanism, RPC services).

® |n practice NT remote admin fails to deliver.
® The most useful NT remote admin tool is a car :-).

® Luke of the Samba Team is developing a UNIX
command line remote admin tool, sending MS

RPCs to NT servers.
® He got re-boot working really early :-).

Comparing UNIX and Windows
NT Remote Proceedure Calls.

® UNIX RPC is mostly based on Sun's ONC/RPC
Spec.
® Uses "network" (big endian) data format.

® RPC servers allocate a transient port and register it
with a "portmapper” daemon.

® Although security was designed in, it is little used and
UNIX 'auth' security (uid/gid in packet) is usually used
(ie. No security, such as NFS).

® MS-RPC is mostly based on the OSF DCE/RPC
SpecC.
® Uses receiver-makes-right data format.
® "Extended" by MS to use NTLMSSP security.

Remote Proceedure Calls
(continued).

® DCE/RPC had a Kerberos based security
authentication mechanism that MS ignored.

® Even in Win2000 with Kerberos 5, MS are ignoring
the DCE/RPC security spec. and modifying Kerberos

5 to suit their own purposes.
® MS-RPC can be tunneled over many different

transports.

® "Raw" TCP/UDP on port 135.

® Inside SMB/CIFS on port 139 (Samba implements
this). This uses the \SERVER\IPC$ connection

followed by a named pipe bind.
® NetBEUI, IPX/SPX etc.

Remote Proceedure Calls
(continued).

MS-RPC uses NTLMSSP to provide "signing"
(verification) and "sealing" (encrypting of
packets). Usually 40 bit only for international use.

RPCSS.EXE is the NT equivalent of the UNIX
ONC/RPC portmapper (provides end-point
mapping services).

DCOM communication is done over an MS-RPC
transport.

As the standard NTLMSSP mechanism is used
RPC servers can impersonate the client security
context in the same way as file serving is done.

Comparing UNIX and NT Remote
file access.

® UNIX uses the familar NFS - love or hate it.

® Uses ONC/RPC packet format.

® Server exports an area of the file system, client
mounts it by asking for a pathname.

® Automounter heavily used to provide location
transparancy (why should | care what server my home

directory is on).
® Simple design - no security, "stateless”.

® \Windows NT uses SMB/CIFS.

® Uses packet format from hell (39 byte header!).

® Server associates a name with an exported area of
the file system, client mounts it by name.

UNIX and NT remote file access
(continued)

® SMB/CIFS uses (you guessed it...) NTLM
security.

® Microsoft DFS is the equivalent of the
automounter. Not yet widely used.

® Remote access directly achieved by use of UNC
pathnames :
\SERVER NAME\share name\path.

® Problem with this is "SERVER NAME" embedded in
the path. What happens if the data is moved ?

® Samba neatly solves this problem with NetBIOS
aliasing.

UNIX and NT Remote file access
(continued).

® SMB/CIFS is very stateful. Clients are expected
to remember enough state to reconnect.

® UNIX (POSIX) locking semantics are far richer
than Windows NT.

® This means UNIX can easily serve SMB/CIFS locking,
Windows NT cannot possibly serve POSIX locking.

® POSIX locking allows lock range splits/merges, lock
upgrades/downgrades. Windows locking is simple
exclusion.

® UNIX NFS locking is usually so broken that no
applications depend on it, so it's usually not an
issue.

Location transparancy (NT
Profiles).

® |n UNIX, user configuration information is stored
in dot files and directories in the home directory.

® Automounter is used to give location transparency on

login (if I can get to my home directory, things should
just work....).

® |n NT user configuration information is stored in
files on a server called the user "profile". The

path to this (UNC) is stored in the user account
database.

® One of these files represents the
HKEY LOCAL USER Registry hive. It is loaded into

the computer the user is logging onto over the
network.

NT profiles (continued).

Any changes made are shipped back over the
network the "profile path" on logout.

What is worse, is that anything stored on the
users desktop is stored in total back onto the
profile server.

® Think about what happens if a user drag-and-drops
an MS Word icon onto their desktop, rather than
creating a "shortcut” (symlink) to it......

A Windows desktop environment is extremely
fragile. Many desktop technicians needed to
maintain a large Windows NT network (high cost
of ownership).

Internationalization (I18N).

® \Windows NT has a very good internationalization
model.

® Internally the kernel is all 16-bit MS-Unicode.

® All system calls are actually Unicode with a codepage
to Unicode translation layer for legacy applications.

® All remote RPC strings are Unicode.

NTFS File system stores all names as 16-bit Unicode
on disk (this doesn't help with FAT of course).

All users/groups/passwords are in Unicode.

NT-version of SMB uses Unicode over the wire.
Allows a true multi-lingual file server.

18N (continued).

® Linux I18N model is poor by comparison.

® Kernel is 8-bit clean - left to applications to determine
what meaning filenames have.

® Locale model allows different systems/environments
to be in different languages, but the global

® Users/groups/passwords are in locale format.
® UTF-8 (Unicode into multiple 8-bit characters) is
meant to solve these issues.

® The main problem comes from the mixing of
"legacy" apps and systems that use local
character sets and newer, UTF-8 based systems.

® No good solution proposed as yet. NFS ignores this
issue.

References.

Inside Windows NT (2nd Edition): Microsoft
Press.

Windows NT Security guide: Stephen A. Sutton.

Inside the Windows NT File System: Microsoft
Press.

Microsoft RPC programming guide: O'Reilly.

Distributing Applications across DCE and
Windows NT: O'Reilly.

And lastly... The Samba source code
(http://samba.orq).

