

Portable Systems Group

NT LAN Manager SMB File Sharing Protocol Extensions

August 24, 1992

Microsoft Corporation

�
This document is currently formatted for an HP LaserJetIII. Be sure to re-insert the Table of Contents after setting up for another printer, as the page breaks move.

.Begin Table C.

1. Overview	1

1.1 Related Documents	1

2. Requirements	2

3. Differences from Existing Protocols	2

3.1 Negotiation of Additional Capabilities	2

3.1.1 NT Status Codes	2

3.1.2 Unicode Strings	3

3.1.3 Large File Support	3

3.1.4 Multiple-Reader Opportunistic Locks	3

3.2 NT Transact SMB	3

3.3 Extended Create and Open Semantics	3

3.4 Handle-Based Delete and Rename	4

3.5 Extended I/O Control Functions	4

3.6 Directory Change Notification	4

3.7 Extended File Information	4

3.8 Command Cancellation	4

3.9 Querying and Setting Security Descriptors on Files	4

4. Protocol Messages	4

4.1 Type Definitions	4

4.2 Symbolic Constants	7

4.3 Header Format	12

4.4 Modified SMBs	14

4.4.1 Negotiate	14

4.4.2 Session Setup And X	17

4.4.3 Find First2	20

4.4.4 Query File Information	22

4.4.5 Set File Information	25

4.4.6 Query Path Information	26

4.4.7 Set Path Information	27

4.4.8 Query File System Information	28

4.4.9 Read And X	29

4.4.10 Write And X	30

4.4.11 Read Block Raw	31

4.4.12 Write Block Raw	32

4.4.13 Locking And X	33

4.5 New SMBs	36

4.5.1 NT Transact	36

4.5.2 NT Create And X	41

4.5.3 NT Create With Security Descriptor Or EAs	49

4.5.4 NT I/O Control	55

4.5.5 NT Notify Directory Change	56

4.5.6 NT Cancel	59

4.5.7 NT Query Security Descriptor	60

4.5.8 NT Set Security Descriptor	62

4.5.9 NT Rename	63

5. Outstanding Issues	64

5.1 Network Code Page	64

5.2 FileLinkInformation	64

5.3 Flags2 vs. NT Create CreateOptions	64

5.4 Querying EAs	64

6. Revision History	65

.End Table C.

�
1. Overview

This document describes NT LAN Manager extensions to the SMB File Sharing Protocol, the protocol that LAN Manager clients (redirectors) and servers use to communicate. (SMB stands for Server Message Block. The full term is very rarely used.) The extensions allow NT I/O system semantics to be expressed between NT systems.

This document is not intended to provide a full description of the various levels of SMB protocol that have been defined, although a single document that did so would certainly be useful. It assumes a working knowledge of the existing SMB protocol, and describes where the NT SMB protocol differs from that protocol.

1.1 Related Documents

The following documents describe the original SMB protocol and subsequent extensions to the protocol:

	o	Microsoft Networks/OpenNET File Sharing Protocol, Document Version 1.9, April 21, 1987; Microsoft Corporation, Intel Corporation ——the MS-NET or "core" protocol.

	o	OpenNET/Microsoft Networks File Sharing Protocol Extensions, Document Version 1.9, September 5, 1986; Intel Corporation, Microsoft Corporation ——the core protocol, adapted for Unix.

	o	Microsoft Networks SMB File Sharing Protocol Extensions Version 2.0, Document Version 3.3, November 7, 1988; Microsoft Corporation ——extensions for LAN Manager 1.0.

	o	Microsoft Networks SMB File Sharing Protocol Extensions Version 3.0, Document Version 1.11, June 19, 1990; Microsoft Corporation ——extensions for LAN Manager 2.0.

	o	Microsoft Networks SMB File Sharing Protocol Extensions, Document Version 3.4; Microsoft Corporation ——extensions for LAN Manager 2.1.

The following documents describe relevant portions of the NT operating system:

	o	NT I/O System Specification.

	o	NT Named Pipe Specification.

	o	NT Mailslot Specification.

	o	NT Status Code Specification

	o	NT Opportunistic Locking Design Note

	o	Distributed System Architecture, Object Security Architecture

	o	Distributed System Architecture, Security IDentifier Architecture Specification

	o	Distributed System Architecture, Access Control List Architecture Specification

	o	Distributed System Architecture, Subject Security Context Specification

2. Requirements

The NT SMB protocol extensions must meet the following requirements:

	o	The protocol must allow expression of NT I/O system semantics between NT systems. Note the absence of the word "full" in the previous sentence: the protocol implements only a subset of the full NT I/O system semantics.

	o	The protocol must address internationalization (NLS) concerns. (Basically, this means that the protocol will pass Unicode strings.)

	o	The protocol must support 64-bit file offsets.

	o	The changes to the existing protocol must be minimized, in order to reduce the implementation time.

	o	Subsets of the protocol must be available and usable from DOS clients. For example, a DOS client must be able to use Unicode without implementing an entirely new protocol.

The following is not a requirement on the NT SMB protocol:

	o	The protocol need not address NT security issues. NT security will be addressed in a subsequent extension to the protocol.

3. Differences from Existing Protocols

This section describes, at a high level, the differences between the NT SMB protocol and previous versions of the SMB protocol.

3.1 Negotiation of Additional Capabilities

When a virtual circuit is established between a client and a server, a negotiation of protocol level and capabilities takes place. When the NT SMB protocol is negotiated, additional, optional capabilities can be negotiated. These capabilities are described in the following subsections.

3.1.1 NT Status Codes

When passing of NT status codes is negotiated, the one-byte error class field and the two-byte error code field in the standard SMB header are replaced by a four-byte status field. The extra space for this status field was obtained by using reserved space in the header. NT status values are returned in this field. These status values have an architected format that incorporates the information included in the separate error class and error code fields. The NT Status Code Specification describes this format. When passing of NT status codes is negotiated, the SMB_FLAGS2_NT_STATUS flag should be set in the Flags2 field of every SMB.

3.1.2 Unicode Strings

When Unicode is negotiated, most strings are passed in Unicode format. This includes file names, resource names, and user names. This applies to null-terminated strings, length specified strings and the type-prefixed strings found in old SMBs.

In all cases where a string is passed in Unicode format, the Unicode string must be word-aligned with respect to the beginning of the SMB. Should the string not naturally fall on a two-byte boundary, a null byte of padding will be inserted, and the Unicode string will begin at the next address.

For type-prefixed Unicode strings, the padding byte is found after the type byte. The type byte is 0x04 (indicating SMB_FORMAT_ASCII) independent of whether the string is Ascii or Unicode.

For strings whose start addresses are found using offsets within the fixed part of the SMB (as opposed to simply being found at the byte following the preceding field,) it is guaranteed that the offset will be properly alighned.

Strings that are never passed in Unicode are:

	o	The protocol strings in the Negotiate SMB request.

	o	The service name string in the Tree Connect And X SMB.

When Unicode is negotiated, the SMB_FLAGS2_UNICODE flag should be set in the Flags2 field of every SMB.

3.1.3 Large File Support

When large file support is negotiated, certain existing SMBs are modified to allow 64-bit file offsets to be passed. The SMBs affected are Read And X, Write And X, Read Block Raw, Write Block Raw, Locking And X, the create/open SMBs, and the query/set directory/file SMBs.

3.1.4 Multiple-Reader Opportunistic Locks

When multiple-reader opportunistic locks (referred to as level II oplocks) are negotiated, multiple readers of the same file can buffer read data; it is only when a write to the file is attempted that the oplock is fully broken. The NT Opportunistic Locking Design Note describes this feature in detail.

3.2 NT Transact SMB

The NT Transact SMB is identical to the existing Transact SMB, except that it allows data blocks of greater than 64KB to be transferred. This SMB is used to transfer the NT Create with SD or EAs, NT Set and NT Query Security Descriptor, NT I/O Control and NT Rename commands.

3.3 Extended Create and Open Semantics

The NT SMB protocol supports extended semantics on Create and Open by implementing two new commands: the NT Create And X command and the NT Transact function NT Create With SD Or EAs. These SMBs allow, for example, specification of more types of desired access and share access; opening of directories; and specification of additional options.

3.4 Handle-Based Delete and Rename

The NT SMB protocol allows open files to be deleted or renamed, as is done in the NT I/O system. This is accomplished by adding information levels/classes to the Set File Information SMB.

3.5 Extended I/O Control Functions

The protocol allows NT device and file system control functions to be passed transparently between NT clients and NT servers. These functions are transferred using the new NT Transact SMB.

3.6 Directory Change Notification

The NT Directory Change Notification SMB allows remoting of the NtNotifyDirectoryChangeFile service.

3.7 Extended File Information

The protocol supports extended file information classes in directory and file queries. This allows more accurate and complete information to be returned from an NT server to an NT client.

3.8 Command Cancellation

The NT SMB protocol allows active commands to be canceled. This is necessary in order to support the NtCancelIoFile service. An example of where this capability might be used is to cancel a pending lock request.

3.9 Querying and Setting Security Descriptors on Files

The NT SMB protocol supports querying and changing the security descriptor on a file. This is accomplished using the NT Transact functions NT Query Security Descriptor and NT Set Security Descriptor respectively.

4. Protocol Messages

This section describes the messages sent between the client and the server, when the NT SMB protocol is negotiated.

4.1 Type Definitions

The structure definitions presented in this specification are in the C language format. Where necessary for clarity and ease of presentation, the C syntax rules have been loosened.

The following basic type definitions are used in this specification:

typedef signed char CHAR;

typedef unsigned char UCHAR;

typedef signed short SHORT;

typedef unsigned short USHORT;

typedef signed long LONG;

typedef unsigned long ULONG;

typedef UCHAR ASCII;

typedef UCHAR ASCIIZ;

ASCII indicates a string of eight-bit characters whose length is specified externally. ASCIIZ indicates a string of eight-bit characters in which the end of the string is indicated by a byte equal to zero.

typedef SHORT WCHAR;

typedef WCHAR UNICODE;

typedef WCHAR UNICODEZ;

WCHAR denotes a single 16-bit character in Unicode format. UNICODE is a string of Unicode characters whose length (in bytes, not characters) is specified externally. UNICODEZ is a string of Unicode character in which the end of the string is indicated by a 16-bit character equal to zero.

typedef UCHAR ASCII_OR_UNICODE;

ASCII_OR_UNICODE denotes a string of ASCII or UNICODE characters. Which type of character is present is determined by negotiation between the client and the server.

typedef UCHAR BOOLEAN;

BOOLEAN indicates a one-byte field in which a value of zero means FALSE and a value of one means TRUE. All other values are invalid.

typedef struct {

	ULONG LowPart;

	LONG HighPart;

} LARGE_INTEGER;

LARGE_INTEGER indicates a signed 64-bit integer.

typedef struct {

	ULONG LowTime;

	LONG HighTime;

} TIME;

TIME indicates a signed 64-bit integer representing either an absolute time or a time interval. Times are specified in units of 100ns. A positive value expresses an absolute time, where the base time (the 64-bit integer with value 0) is the beginning of the year 1601 AD in the Gregorian calendar. A negative value expresses a time interval relative to some base time, usually the current time.

ACCESS_MASK indicates a longword sized structure which can be considered simply as a ULONG containing multiple single rights ORed together. The possible rights are listed in the following section.

typedef ULONG SECURITY_INFORMATION;

SECURITY_INFORMATION is used to reference the security information associated with an object.

typedef USHORT SECURITY_DESCRIPTOR_CONTROL;

SECURITY_DESCRIPTOR_CONTROL is used to specify fields containing security descriptor control flags.

typedef ULONG DEVICE_TYPE;

DEVICE_TYPE is used to contain NT device type values.

�4.2 Symbolic Constants

The following symbolic constants are used in this specification:

// SMB command codes

#define SMB_COM_NT_TRANSACT				0xA0

#define SMB_COM_NT_TRANSACT_SECONDARY	0xA1

#define SMB_COM_NT_CREATE_ANDX			0xA2

#define SMB_COM_NT_CANCEL				0xA4

#define SMB_COM_NO_ANDX_COMMAND			0xFF

// NT Transaction function codes

#define NT_TRANSACT_CREATE				1

#define NT_TRANSACT_IOCTL				2

#define NT_TRANSACT_SET_SECURITY_DESC	3

#define NT_TRANSACT_NOTIFY_CHANGE		4

#define NT_TRANSACT_RENAME				5

#define NT_TRANSACT_QUERY_SECURITY_DESC	6

// SMB Header Flags2 field bits

#define SMB_FLAGS2_KNOWS_LONG_NAMES			0x0001

#define SMB_FLAGS2_KNOWS_EAS				0x0002

#define SMB_FLAGS2_IS_LONG_NAME				0x0040

#define SMB_FLAGS2_PAGING_IO				0x2000

#define SMB_FLAGS2_NT_STATUS				0x4000

#define SMB_FLAGS2_UNICODE					0x8000

// NT extensions to file info levels

#define SMB_FIND_FILE_DIRECTORY_INFO		0x101

#define SMB_FIND_FILE_FULL_DIRECTORY_INFO	0x102

#define SMB_FIND_FILE_NAMES_INFO			0x103

#define SMB_FIND_FILE_BOTH_DIRECTORY_INFO	0x104

#define SMB_QUERY_FILE_BASIC_INFO		0x101

#define SMB_QUERY_FILE_STANDARD_INFO	0x102

#define SMB_QUERY_FILE_EA_INFO			0x103

#define SMB_QUERY_FILE_NAME_INFO		0x104

#define SMB_QUERY_FILE_ALLOCATION_INFO	0x105

#define SMB_QUERY_FILE_END_OF_FILEINFO	0x106

#define SMB_QUERY_FILE_ALL_INFO			0x107

#define SMB_QUERY_FILE_ALT_NAME_INFO	0x108

#define SMB_QUERY_FILE_STREAM_INFO		0x109

#define SMB_SET_FILE_BASIC_INFO			0x101

#define SMB_SET_FILE_DISPOSITION_INFO	0x102

#define SMB_SET_FILE_ALLOCATION_INFO	0x103

#define SMB_SET_FILE_END_OF_FILE_INFO	0x104

#define SMB_QUERY_FS_LABEL_INFO			0x101

#define SMB_QUERY_FS_VOLUME_INFO		0x102

#define SMB_QUERY_FS_SIZE_INFO			0x103

#define SMB_QUERY_FS_DEVICE_INFO		0x104

#define SMB_QUERY_FS_ATTRIBUTE_INFO		0x105

// Server/workstation capabilities

#define CAP_RAW_MODE					0x0001

#define CAP_MPX_MODE					0x0002

#define CAP_UNICODE						0x0004

#define CAP_LARGE_FILES					0x0008

#define CAP_NT_SMBS						0x0010

#define CAP_RPC_REMOTE_APIS				0x0020

#define CAP_NT_STATUS					0x0040

#define CAP_LEVEL_II_OPLOCKS			0x0080

#define CAP_LOCK_AND_READ				0x0100

// Negotiate response SecurityMode field bits

#define NEGOTIATE_USER_SECURITY			0x01

#define NEGOTIATE_ENCRYPT_PASSWORDS		0x02

// (NT) Locking AndX request LockType field bits

#define LOCKING_ANDX_SHARED_LOCK		0x01

#define LOCKING_ANDX_OPLOCK_RELEASE		0x02

#define LOCKING_ANDX_CHANGE_LOCKTYPE	0x04

#define LOCKING_ANDX_CANCEL_LOCK		0x08

#define LOCKING_ANDX_LARGE_FILES		0x10

// (NT) Locking AndX request OplockLevel field values

#define OPLOCK_BROKEN_TO_NONE			0

#define OPLOCK_BROKEN_TO_II				1

// NT Create Flags bits

#define NT_CREATE_REQUEST_OPLOCK		0x02

#define NT_CREATE_REQUEST_OPBATCH		0x04

#define NT_CREATE_OPEN_TARGET_DIR		0x08

// NT Create DesiredAccess (ACCESS_MASK) field bits

#define DELETE							0x00010000

#define READ_CONTROL					0x00020000

#define WRITE_DAC						0x00040000

#define WRITE_OWNER						0x00080000

// NT Create DesiredAccess (ACCESS_MASK) field bits

#define FILE_READ_DATA					0x0001

#define FILE_LIST_DIRECTORY				0x0001

#define FILE_WRITE_DATA					0x0002

#define FILE_APPEND_DATA				0x0004

#define FILE_READ_EA					0x0008

#define FILE_WRITE_EA					0x0010

#define FILE_EXECUTE					0x0020

#define FILE_TRAVERSE					0x0020

#define FILE_READ_ATTRIBUTES			0x0080

#define FILE_WRITE_ATTRIBUTES			0x0100

// file attribute bits

#define FILE_ATTRIBUTE_READONLY			0x01

#define FILE_ATTRIBUTE_HIDDEN			0x02

#define FILE_ATTRIBUTE_SYSTEM			0x04

#define FILE_ATTRIBUTE_VOLUME			0x08

#define FILE_ATTRIBUTE_DIRECTORY		0x10

#define FILE_ATTRIBUTE_ARCHIVE			0x20

#define FILE_ATTRIBUTE_NORMAL			0x80

// file and directory share access rights

#define FILE_SHARE_READ					0x01

#define FILE_SHARE_WRITE				0x02

#define FILE_SHARE_DELETE				0x04

// NT Create CreateDisposition values

#define FILE_SUPERSEDE					0

#define FILE_OPEN						1

#define FILE_CREATE						2

#define FILE_OPEN_IF					3

#define FILE_OVERWRITE					4

#define FILE_OVERWRITE_IF				5

// NT Create CreateOptions bits

#define FILE_DIRECTORY_FILE				0x00000001

#define FILE_WRITE_THROUGH				0x00000002

#define FILE_SEQUENTIAL_ONLY			0x00000004

#define FILE_NON_DIRECTORY_FILE			0x00000040

#define FILE_NO_EA_KNOWLEDGE			0x00000200

#define FILE_EIGHT_DOT_THREE_ONLY		0x00000400

#define FILE_RANDOM_ACCESS				0x00000800

#define FILE_DELETE_ON_CLOSE			0x00001000

// NT Create SecurityFlags bits

#define SMB_SECURITY_DYNAMIC_TRACKING	0x01

#define SMB_SECURITY_EFFECTIVE_ONLY		0x02

// NT Create CreateAction return values

#define FILE_SUPERSEDED					0

#define FILE_OPENED						1

#define FILE_CREATED					2

#define FILE_OVERWRITTEN				3

#define FILE_EXISTS						4

#define FILE_DOES_NOT_EXIST				5

// NT Create response FileType values

typedef enum {

	FileTypeDisk						= 0,

	FileTypeByteModePipe				= 1,

	FileTypeMessageModePipe				= 2,

	FileTypePrinter						= 3,

	FileTypeCommDevice					= 4,

	FileTypeUnknown						= 0xFFFF

} FILE_TYPE;

// NT Create response DeviceState bits

#define DeviceStateBlocking				0x8000

#define DeviceStateEndPoint				0x4000

#define DeviceStatePipeType				0x0C00

#define DeviceStateReadMode				0x0300

#define DeviceStateIcount				0x00FF

// NT Notify Directory Change CompletionFilter bits

#define FILE_NOTIFY_CHANGE_FILE_NAME	0x00000001

#define FILE_NOTIFY_CHANGE_DIR_NAME		0x00000002

#define FILE_NOTIFY_CHANGE_ATTRIBUTES	0x00000004

#define FILE_NOTIFY_CHANGE_SIZE			0x00000008

#define FILE_NOTIFY_CHANGE_LAST_WRITE	0x00000010

#define FILE_NOTIFY_CHANGE_LAST_ACCESS	0x00000020

#define FILE_NOTIFY_CHANGE_CREATION		0x00000040

#define FILE_NOTIFY_CHANGE_EA			0x00000080

#define FILE_NOTIFY_CHANGE_SECURITY		0x00000100

// NT Notify Directory Change return Action values

#define FILE_ACTION_ADDED				0x00000001

#define FILE_ACTION_REMOVED				0x00000002

#define FILE_ACTION_MODIFIED			0x00000003

#define FILE_ACTION_RENAMED_OLD_NAME	0x00000004

#define FILE_ACTION_RENAMED_NEW_NAME	0x00000005

// NT Notify Directory Change additional status/error codes

#define STATUS_NOTIFY_ENUM_DIR			(0x0000010CL)

#define ERROR_NOTIFY_ENUM_DIR			1022

// NT RenameFlags bits

#define SMB_RENAME_REPLACE_IF_EXISTS	0x01

// NT Set/Query SD Security Information bits

#define OWNER_SECURITY_INFORMATION		(0X00000001L)

#define GROUP_SECURITY_INFORMATION		(0X00000002L)

#define DACL_SECURITY_INFORMATION		(0X00000004L)

#define SACL_SECURITY_INFORMATION		(0X00000008L)

// NT Create ImpersonationLevel values

typedef enum {

	SecurityAnonymous					= 0,

	SecurityIdentification				= 1,

	SecurityImpersonation				= 2,

	SecurityDelegation					= 3

} SECURITY_IMPERSONATION_LEVEL;

�4.3 Header Format

All SMBs start with a standard header. This is the definition for the header:

UCHAR Protocol[4];

UCHAR Command;

union {

	struct {

		UCHAR ErrorClass;

		UCHAR Reserved;

		USHORT Error;

	} DosError;

	ULONG NtStatus;

} Status;

UCHAR Flags;

USHORT Flags2;

USHORT Reserved2[6];

USHORT Tid;

USHORT Pid;

USHORT Uid;

USHORT Mid;

Protocol ——Specifies a "signature" indicating that the message is in the SMB protocol format. The signature value is "0xffSMB".

Command ——Specifies the command code for the first (or only) command in the SMB.

Status ——Specifies, in a response SMB, the status of the last (or only) command in the SMB that was processed by the server. When flag SMB_FLAGS2_NT_STATUS of Flags2 is clear, the DosError part of this union is used, and ErrorClass and Error are as specified in previous versions of the protocol. When flag SMB_FLAGS2_NT_STATUS of Flags2 is set, NtStatus is valid, and is a status code in the standard NT format.

Flags ——Specifies flags. Its usage is the same as in previous versions of the protocol.

Flags2 ——Specifies flags. Its usage is the same as in previous versions of the protocol, with the following additions:

SMB_FLAGS2_PAGING_IO ——When set, indicates that a read will be permitted if the client does not have read permission but does have execute permission. This flag is only useful on a read request.

SMB_FLAGS2_NT_STATUS ——When clear, specifies that the Status field is in DOS format. When set, specifies that the Status field is in NT format.

SMB_FLAGS2_UNICODE ——When clear, specifies that any ASCII_OR_UNICODE strings in this message contain ASCII characters. When set, any such strings contain Unicode characters.

Tid, Pid, Uid, Mid ——Specify the tree, process, user, and multiplex identifiers. Their usage is the same as in previous versions of the protocol.

In the command-specific descriptions below, the header portion of the messages is not repeated. Where necessary, specific information about header fields is given.

�4.4 Modified SMBs

This section defines extensions to existing SMBs.

We don't currently list SMBs that change only to allow Unicode strings (essentially all strings in all SMBs except the protocol strings in Negotiate request and the service name string in Tree Connect AndX are Unicode). There should be a list of all such changes, albeit without full descriptions. Note the details concerning Unicode strings in section 3.1.2.

4.4.1 Negotiate

The Negotiate command is the first SMB sent on a newly established virtual circuit. It is used to negotiate a protocol level. In the response to the command, the server sends information indicating which optional capabilities it supports. The final step in the negotiation occurs when the client sends a Session Setup And X command.

The request format for Negotiate is unchanged from previous versions of the protocol. The response format is changed when the NT SMB protocol is negotiated.

The command code for Negotiate is 0x72. The protocol string identifying the NT SMB protocol is "NT LANMAN 1.0".

Request Format (not extended)

UCHAR WordCount;

USHORT ByteCount;

struct {

	UCHAR Format;

	UCHAR DialectName[];

} Dialects[];

Extended Response Format

UCHAR WordCount;

USHORT DialectIndex;

UCHAR SecurityMode;

USHORT MaxMpxCount;

USHORT MaxNumberVcs;

ULONG MaxBufferSize;

ULONG MaxRawSize;

ULONG SessionKey;

ULONG Capabilities;

TIME ServerTime;

USHORT ServerTimeZone;

UCHAR Reserved;

USHORT ByteCount;

UCHAR PasswordEncryptionKey[];

WordCount ——Must contain the value 17.

DialectIndex ——Specifies the array index (within the Dialects array in the request) of the dialect selected by the server. The first entry is index 0.

SecurityMode ——Specifies the following flags:

NEGOTIATE_USER_SECURITY ——When clear, indicates that the server is operating under share-level security. When set, indicates that the server is operating under user-level security. (NT servers always negotiate user-level security.)

NEGOTIATE_ENCRYPT_PASSWORDS ——When clear, indicates that the client should not encrypt passwords. When set, indicates that the client should encrypt passwords. (NT servers always negotiate password encryption.)

(Note that the fields from SecurityMode to Reserved are all naturally aligned.)

MaxMpxCount ——Specifies the maximum number of requests the server will allow the client to have active simultaneously.

MaxNumberVcs ——Specifies the maximum number of virtual circuits the server will allow the client to have active to the server.

MaxBufferSize ——Specifies the maximum message size the server can send or receive in a normal SMB.

MaxRawSize ——Specifies the maximum message size the server can send or receive in a raw mode data buffer.

SessionKey ——Specifies the unique identifier for the session assigned by the server.

Capabilities ——Specifies the following flags:

CAP_RAW_MODE ——When set, indicates that the server supports the Read Block Raw and Write Block Raw commands.

CAP_MPX_MODE ——When set, indicates that the server supports the Read Block Multiplexed and Write Block Multiplexed commands.

CAP_UNICODE ——When set, indicates that the server recognizes Unicode strings.

CAP_LARGE_FILES ——When set, indicates that the server supports large files and 64-bit file offsets.

CAP_NT_SMBS ——When set, indicates that the server supports the new SMBs added in this version of the protocol.

CAP_RPC_REMOTE_APIS ——When set, indicates that the server supports remote APIs via RPC.

CAP_NT_STATUS ——When set, indicates that the server recognizes NT-style status codes.

CAP_LEVEL_II_OPLOCKS ——When set, indicates that the server supports level II oplocks.

CAP_LOCK_AND_READ ——When set, indicates that the server can process the LockAndRead and WriteAndUnlock SMBs. This capability is present in older versions of the protocol as a bit in the Flags field in the Negotiate response. In the NT Negotiate response, the old bit is ignored.

ServerTime ——System time of the server.

ServerTimeZone ——Time zone of the server, expressed as minutes from UTC.

Reserved ——Is a reserved field and should be zero.

ByteCount ——Specifies the total length, in bytes, of PasswordEncryptionKey.

PasswordEncryptionKey ——Specifies the password encryption key assigned by the server.

�4.4.2 Session Setup And X

The Session Setup And X command is the second command sent by the client on a newly established virtual circuit. Although multiple sessions may be set up on a circuit, the first Session Setup And X command carries the final negotiated parameters for the circuit.

In the request, there are now two password encodings and their lengths, as well as a new Capabilities field. In the response, there is a new PrimaryDomain field.

The command code for Session Setup And X is 0x73.

Extended Request Format

UCHAR WordCount;

UCHAR AndXCommand;

UCHAR AndXReserved;

USHORT AndXOffset;

USHORT MaxBufferSize;

USHORT MaxMpxCount;

USHORT VcNumber;

ULONG SessionKey;

USHORT CaseInsensitivePasswordLength;

USHORT CaseSensitivePasswordLength;

ULONG Reserved;

ULONG Capabilities;

USHORT ByteCount;

UCHAR CaseInsensitivePassword[];

UCHAR CaseSensitivePassword[];

ASCII_OR_UNICODE Accountname[];

ASCII_OR_UNICODE PrimaryDomain[];

ASCII_OR_UNICODE NativeOS[];

ASCII_OR_UNICODE NativeLanMan[];

WordCount ——Must contain the value 13.

AndXCommand ——Specifies the command code for the next command in the chain, if any.

AndXReserved ——Is a reserved field and should be zero.

AndXOffset ——Specifies the offset to the next command in the chain.

MaxBufferSize ——Specifies the maximum message size the client can receive in a normal SMB.

MaxMpxCount ——Specifies the maximum number of requests the client will have active simultaneously.

VcNumber ——Specifies the virtual circuit number assigned by the client.

SessionKey ——Specifies the unique identifier for the session assigned by the server in the Negotiate response.

CaseInsensitivePasswordLength ——Specifies the length of CaseInsensitivePassword in bytes.

CaseSensitivePasswordLength ——Specifies the length of CaseSensitivePassword in bytes.

Reserved ——Is a reserved field and should be zero.

Capabilities ——Specifies the following flags:

CAP_NT_STATUS ——When set, indicates that the client recognizes NT-style status codes.

CAP_LEVEL_II_OPLOCKS ——When set, indicates that the client supports level II oplocks.

CAP_UNICODE ——When set, indicates that the client recognizes Unicode strings.

CAP_LARGE_FILES ——When set, indicates that the client supports large files and 64-bit file offsets.

CAP_NT_SMBS ——When set, indicates that the client supports the new SMBs added in this version of the protocol.

ByteCount ——Specifies the total length, in bytes, of CaseInsensitivePassword, CaseSensitivePassword, Accountname, PrimaryDomain, NativeOS and NativeLanMan.

CaseInsensitivePassword ——Contains an encrypted representation of the case-insensitive password for the account that is being set up. The plain-text form of the password is in OEM characters.

CaseSensitivePassword ——Contains an encrypted representation of the case-sensitive password for the account that is being set up. The plain-text form of the password is always in Unicode characters.

Accountname ——Specifies the username for the account that is being set up. The string is NUL terminated.

PrimaryDomain ——Specifies the logon domain of the user. This string is NUL terminated.

NativeOS ——Specifies the client operating system. This string is NUL terminated.

NativeLanMan ——Specifies the client LAN Manager type. This string is NUL terminated.

Extended Response Format

UCHAR WordCount;

UCHAR AndXCommand;

UCHAR AndXReserved;

USHORT AndXOffset;

USHORT Action;

USHORT ByteCount;

ASCII_OR_UNICODE NativeOS[];

ASCII_OR_UNICODE NativeLanMan[];

ASCII_OR_UNICODE PrimaryDomain[];

WordCount ——Must contain the value 13.

AndXCommand ——Specifies the command code for the next command in the chain, if any.

AndXReserved ——Is a reserved field and should be zero.

AndXOffset ——Specifies the offset to the next command in the chain.

Action ——Request mode. Bit 0 indicates that logon was successful, but as guest.

ByteCount ——Specifies the total length, in bytes of NativeOS, NativeLanMan and PrimaryDomain.

NativeOS ——Specifies the server operating system. This string is NUL terminated.

NativeLanMan ——Specifies the server LAN Manager type. This string is NUL terminated.

PrimaryDomain ——Specifies the logon domain of the user. This string is NUL terminated.

�4.4.3 Find First2

When the NT SMB protocol has been negotiated, the Find First2 Transact2 function supports the following additional information classes:

	o	SMB_FIND_FILE_DIRECTORY_INFO ——Equivalent to FileDirectoryInformation in the NT I/O system. Uses the following response data format.

ULONG NextEntryOffset;

ULONG FileIndex;

LARGE_INTEGER CreationTime;

LARGE_INTEGER LastAccessTime;

LARGE_INTEGER LastWriteTime;

LARGE_INTEGER ChangeTime;

LARGE_INTEGER EndOfFile;

LARGE_INTEGER AllocationSize;

ULONG FileAttributes;

ULONG FileNameLength;

UNICODE FileName[];

	o	SMB_FIND_FILE_FULL_DIRECTORY_INFO ——Equivalent to FileFullDirectoryInformation in the NT I/O system. Uses the following response data format.

ULONG NextEntryOffset;

ULONG FileIndex;

LARGE_INTEGER CreationTime;

LARGE_INTEGER LastAccessTime;

LARGE_INTEGER LastWriteTime;

LARGE_INTEGER ChangeTime;

LARGE_INTEGER EndOfFile;

LARGE_INTEGER AllocationSize;

ULONG FileAttributes;

ULONG FileNameLength;

ULONG EaSize;

UNICODE FileName[];

	o	SMB_FIND_FILE_NAMES_INFO ——Equivalent to FileNamesInformation in the NT I/O system. Uses the following response data format.

ULONG NextEntryOffset;

ULONG FileIndex;

ULONG FileNameLength;

UNICODE FileName[];

	o	SMB_FIND_FILE_BOTH_DIRECTORY_INFO ——Equivalent to FileBothDirectoryInformation in the NT I/O system. Uses the following response data format.

ULONG NextEntryOffset;

ULONG FileIndex;

LARGE_INTEGER CreationTime;

LARGE_INTEGER LastAccessTime;

LARGE_INTEGER LastWriteTime;

LARGE_INTEGER ChangeTime;

LARGE_INTEGER EndOfFile;

LARGE_INTEGER AllocationSize;

ULONG FileAttributes;

ULONG FileNameLength;

ULONG EaSize;

CHAR ShortNameLength;

UNICODE ShortName[12];

UNICODE FileName[];

Note that the FileName and ShortName fields in each of these additional information levels are always in Unicode format, even if Unicode is not a negotiated capability for the session.

�4.4.4 Query File Information

When the NT SMB protocol has been negotiated, the Query File Information Transact2 function supports the following additional information classes:

	o	SMB_QUERY_FILE_BASIC_INFO ——Equivalent to FileBasicInformation in the NT I/O system. Uses the following response data format.

typedef struct {

	LARGE_INTEGER CreationTime;

	LARGE_INTEGER LastAccessTime;

	LARGE_INTEGER LastWriteTime;

	LARGE_INTEGER ChangeTime;

	ULONG FileAttributes;

} FILE_BASIC_INFORMATION;

	o	SMB_QUERY_FILE_STANDARD_INFO ——Equivalent to FileStandardInformation in the NT I/O system. Uses the following response data format.

typedef struct {

	LARGE_INTEGER AllocationSize;

	LARGE_INTEGER EndOfFile;

	ULONG NumberOfLinks;

	BOOLEAN DeletePending;

	BOOLEAN Directory;

} FILE_STANDARD_INFORMATION;

	o	SMB_QUERY_FILE_EA_INFO ——Equivalent to FileEaInformation in the NT I/O system. Uses the following response data format.

typedef struct {

	ULONG EaSize;

} FILE_EA_INFORMATION;

	o	SMB_QUERY_FILE_NAME_INFO ——Equivalent to FileNameInformation in the NT I/O system. Uses the following response data format.

typedef struct {

	ULONG FileNameLength;

	UNICODE FileName[];

} FILE_NAME_INFORMATION;

	o	SMB_QUERY_FILE_ALLOCATION_INFO ——Equivalent to FileAllocationInformation in the NT I/O system. Uses the following response data format.

typedef struct {

	LARGE_INTEGER AllocationSize;

} FILE_ALLOCATION_INFORMATION;

	o	SMB_QUERY_FILE_END_OF_FILEINFO ——Equivalent to FileEndOfFileInformation in the NT I/O system. Uses the following response data format.

typedef struct {

	LARGE_INTEGER EndOfFile;

} FILE_END_OF_FILE_INFORMATION;

	o	SMB_QUERY_FILE_ALL_INFO ——Roughly equivalent to FileAllInformation in the NT I/O system. Uses the following response data format.

typedef struct {

	FILE_BASIC_INFORMATION BasicInformation;

	FILE_STANDARD_INFORMATION StandardInformation;

	FILE_INTERNAL_INFORMATION InternalInformation;

	FILE_EA_INFORMATION EaInformation;

	FILE_ACCESS_INFORMATION AccessInformation;

	FILE_POSITION_INFORMATION PositionInformation;

	FILE_MODE_INFORMATION ModeInformation;

	FILE_ALIGNMENT_INFORMATION AlignmentInformation;

	FILE_NAME_INFORMATION NameInformation;

} FILE_ALL_INFORMATION;

where FILE_BASIC_INFORMATION, FILE_STANDARD_INFORMATION, FILE_EA_INFORMATION and FILE_EA_NAME_INFORMATION are as described above, and the remaining types are as follows:

typedef struct {

	LARGE_INTEGER IndexNumber;

} FILE_INTERNAL_INFORMATION;

typedef struct {

	ACCESS_MASK AccessFlags;

} FILE_ACCESS_INFORMATION;

typedef struct {

	LARGE_INTEGER CurrentByteOffset;

} FILE_POSITION_INFORMATION;

typedef struct {

	ULONG Mode;

} FILE_MODE_INFORMATION;

typedef struct {

	ULONG AlignmentRequirement;

} FILE_ALIGNMENT_INFORMATION;

	o	SMB_QUERY_FILE_ALT_NAME_INFO ——Equivalent to FileAlternateNameInformation in the NT I/O system. Uses the same response data format as SMB_QUERY_FILE_NAME_INFO above.

	o	SMB_QUERY_FILE_STREAM_INFO ——Equivalent to FileStreamInformation in the NT I/O system. Uses the following response data format.

typedef struct {

	ULONG NextEntryOffset;

	LARGE_INTEGER StreamSize;

	LARGE_INTEGER StreamAllocationSize;

	ULONG StreamNameLength;

	UNICODE StreamName[];

} FILE_STREAM_INFORMATION;

Note that the FileName field in FILE_NAME_INFORMATION and StreamName field in FILE_STREAM_INFORMATION are always in Unicode format, even if Unicode is not a negotiated capability for the session.

�4.4.5 Set File Information

When the NT SMB protocol has been negotiated, the Set File Information Transact2 function supports the following additional information classes:

	o	SMB_SET_FILE_BASIC_INFO ——Equivalent to FileBasicInformation in the NT I/O system. Uses the following request data format.

LARGE_INTEGER CreationTime;

LARGE_INTEGER LastAccessTime;

LARGE_INTEGER LastWriteTime;

LARGE_INTEGER ChangeTime;

ULONG FileAttributes;

	o	SMB_SET_FILE_DISPOSITION_INFO ——Equivalent to FileDispositionInformation in the NT I/O system. Uses the following request data format.

BOOLEAN DeleteFile;

	o	SMB_SET_FILE_ALLOCATION_INFO ——Equivalent to FileAllocationInformation in the NT I/O system. Uses the following request data format.

LARGE_INTEGER AllocationSize;

	o	SMB_SET_FILE_END_OF_FILE_INFO ——Equivalent to FileEndOfFileInformation in the NT I/O system. Uses the following request data format.

LARGE_INTEGER EndOfFile;

�4.4.6 Query Path Information

When the NT SMB protocol has been negotiated, the Query Path Information Transact2 function supports the same additional information classes as Query File Information, namely:

	o	SMB_QUERY_FILE_BASIC_INFO

	o	SMB_QUERY_FILE_STANDARD_INFO

	o	SMB_QUERY_FILE_EA_INFO

	o	SMB_QUERY_FILE_NAME_INFO

	o	SMB_QUERY_FILE_ALLOCATION_INFO

	o	SMB_QUERY_FILE_END_OF_FILEINFO

	o	SMB_QUERY_FILE_ALLINFO

See the description of Query File Information for the data formats.

�4.4.7 Set Path Information

When the NT SMB protocol has been negotiated, the Set Path Information Transact2 function supports the same additional information classes as Set File Information, namely:

	o	SMB_SET_FILE_BASIC_INFO

	o	SMB_SET_FILE_DISPOSITION_INFO

	o	SMB_SET_FILE_ALLOCATION_INFO

	o	SMB_SET_FILE_END_OF_FILE_INFO

See the description of Set File Information for the data formats.

�4.4.8 Query File System Information

When the NT SMB protocol has been negotiated, the Query File System Information Transact2 function supports the following additional information classes:

	o	SMB_QUERY_FS_LABEL_INFO ——Equivalent to FileFsLabelInformation in the NT I/O system. Uses the following response data format.

ULONG VolumeLabelLength;

UNICODE VolumeLabel[];

	o	SMB_QUERY_FS_VOLUME_INFO ——Equivalent to FileFsVolumeInformation in the NT I/O system. Uses the following response data format.

LARGE_INTEGER VolumeCreationTime;

ULONG VolumeSerialNumber;

ULONG VolumeLabelLength;

BOOLEAN SupportsObjects;

UNICODE VolumeLabel[];

	o	SMB_QUERY_FS_SIZE_INFO ——Equivalent to FileFsSizeInformation in the NT I/O system. Uses the following response data format.

LARGE_INTEGER TotalAllocationUnits;

LARGE_INTEGER AvailableAllocationUnits

ULONG SectorsPerAllocationUnit;

ULONG BytesPerSector;

	o	SMB_QUERY_FS_DEVICE_INFO ——Equivalent to FileFsDeviceInformation in the NT I/O system. Uses the following response data format.

DEVICE_TYPE DeviceType;

ULONG Characteristics;

	o	SMB_QUERY_FS_ATTRIBUTE_INFO ——Equivalent to FileFsAttributeInformation in the NT I/O system. Uses the following response data format.

ULONG FileSystemAttributes;

LONG MaximumComponentNameLength;

ULONG FileSystemNameLength;

UNICODE FileSystemName[];

Note that the VolumeLabel and FileSystemName fields in these additional information levels are always in Unicode format, even if Unicode is not a negotiated capability for the session.

�4.4.9 Read And X

When the NT SMB protocol has been negotiated, the Read And X command supports the specification of a 64-bit file offset. This is accomplished by allowing the client to increase the WordCount field by two (from 10 to 12) and place the high four bytes of the file offset between the Remaining and ByteCount fields. The server uses the value of WordCount to determine whether a 32-bit or 64-bit offset is present. The response format is not extended.

�4.4.10 Write And X

When the NT SMB protocol has been negotiated, the Write And X command supports the specification of a 64-bit file offset. This is accomplished by allowing the client to increase the WordCount field by two (from 12 to 14) and place the high four bytes of the file offset between the DataOffset and ByteCount fields. The server uses the value of WordCount to determine whether a 32-bit or 64-bit offset is present. The response format is not extended.

�4.4.11 Read Block Raw

When the NT SMB protocol has been negotiated, the Read Block Raw command supports the specification of a 64-bit file offset. This is accomplished by allowing the client to increase the WordCount field by two (from 8 to 10) and place the high four bytes of the file offset between the Reserved and ByteCount fields. The server uses the value of WordCount to determine whether a 32-bit or 64-bit offset is present. The response format is not extended.

�4.4.12 Write Block Raw

When the NT SMB protocol has been negotiated, the Write Block Raw command supports the specification of a 64-bit file offset. This is accomplished by allowing the client to increase the WordCount field by two (from 12 to 14) and place the high four bytes of the file offset between the DataOffset and ByteCount fields. The server uses the value of WordCount to determine whether a 32-bit or 64-bit offset is present. The response format is not extended.

�4.4.13 Locking And X

This SMB is used to lock and unlock byte ranges. When the NT SMB protocol has been negotiated, the client may specify byte ranges using 64-bit offsets.

The Locking And X SMB is also used in breaking oplocks. The server sends a Locking And X SMB with a special bit set to indicate that an oplock is being broken, and the client sends a Locking And X SMB with the same bit set to release the oplock. When the NT SMB protocol has been negotiated, this SMB is extended to allow the server to specify oplock levels, by appropriating the upper byte of LockType for the new OplockLevel field.

Extended Request Format

UCHAR WordCount;

UCHAR AndXCommand;

UCHAR AndXReserved;

USHORT AndXOffset;

USHORT Fid;

UCHAR LockType;

UCHAR OplockLevel;

ULONG Timeout;

USHORT NumberOfUnlocks;

USHORT NumberOfLocks;

USHORT ByteCount;

LOCK_RANGE Unlocks[];

LOCK_RANGE Locks[];

WordCount ——Must contain the value 8.

AndXCommand ——Specifies the command code for the next command in the chain, if any.

AndXReserved ——Is a reserved field and should be zero.

AndXOffset ——Specifies the offset to the next command in the chain.

Fid ——Specifies the identifier for the open file instance.

LockType ——Specifies the following flags:

LOCKING_ANDX_SHARED_LOCK ——When clear, indicates that an exclusive lock is being requested. When set, indicates that a shared lock is being requested.

LOCKING_ANDX_OPLOCK_RELEASE ——When set in an unsolicited message from the server, indicates that the oplock previously granted to the client for this file is being broken. The OplockLevel field indicates the new granted oplock level. When this bit is set in a message from the client, it indicates that the client is acknowledging the oplock level change.

LOCKING_ANDX_CHANGE_LOCKTYPE ——When set, indicates that the client wishes to unlock the specified region, and relock it according to the mode specified by the LOCKING_ANDX_SHARED_LOCK bit, atomically. Currently, the NT LAN Manager server does not support this operation.

LOCKING_ANDX_CANCEL_LOCK ——When set, indicatates that the client wishes to cancel the outstanding lock request. This is used to support cancelling of lock request for client which do not support the Cancel SMB. The cancel SMB is the preferred method for cancelling requests.

LOCKING_ANDX_LARGEFILES ——When clear, indicates that the lock ranges are specified using 32-bit offsets. When set, indicates that the lock ranges are specified using 64-bit offsets.

OplockLevel ——Indicates the new oplock level when an existing oplock is being broken. The legal values are OPLOCK_BROKEN_TO_NONE and OPLOCK_BROKEN_TO_II, where OPLOCK_BROKEN_TO_NONE means that the client no longer has an oplock on the file, and OPLOCK_BROKEN_TO_II means that the client now has a multiple-reader oplock. If the client has indicated that it does not understand level II oplocks, the server will always specify OPLOCK_BROKEN_TO_NONE in this field when breaking an oplock.

Timeout ——Specifies the amount of time to wait for the specified locks to be granted.

NumberOfUnlocks ——Specifies the number of unlock ranges that are specified in UnlockRanges.

NumberOfLocks ——Specifies the number of lock ranges that are specified in LockRanges.

ByteCount ——Specifies the total size, in bytes, of the UnlockRanges and LockRanges fields.

UnlockRanges ——Supplies zero or more ranges of existing locks that are to be released. When LOCKING_ANDX_LARGE_FILES is clear, the ranges are specified in the 32-bit lock range format given below. When LOCKING_ANDX_LARGE_FILES is set, the ranges are specified in the 64-bit lock range format given below.

LockRanges ——Supplies zero or more ranges of locks that are to be obtained. When LOCKING_ANDX_LARGE_FILES is clear, the ranges are specified in the 32-bit lock range format given below. When LOCKING_ANDX_LARGE_FILES is set, the ranges are specified in the 64-bit lock range format given below.

Response Format (not extended)

UCHAR WordCount;

UCHAR AndXCommand;

UCHAR AndXReserved;

USHORT AndXOffset;

USHORT ByteCount;

32-bit Lock Range Format (not extended)

USHORT Pid;

ULONG Offset;

ULONG Length;

64-bit Lock Range Format (new)

USHORT Pid;

USHORT Pad;

LARGE_INTEGER Offset;

ULONG Length;

�4.5 New SMBs

This section defines SMBs that are new in this version of the protocol. Clients are allowed to send these SMBs only if the server indicates that it supports them in the Negotiate response.

4.5.1 NT Transact

The NT Transact SMB is used for commands that potentially need to transfer a large amount of data (greater than the negotiated buffer size). NT Transact operates in the same way as the original Transact. See Microsoft Networks SMB File Sharing Protocol Extensions Version 2.0 for a detailed description of Transact.

The command code for the NT Transact primary SMB is SMB_COM_NT_TRANSACT. The command code for the NT Transact secondary SMB is SMB_COM_NT_TRANSACT_SECONDARY.

The interim response format has command code SMB_COM_NT_TRANSACT and is only ever returned in response to a primary request. The response format can have either SMB_COM_NT_TRANSACT or SMB_COM_NT_TRANSACT_SECONDARY as its command code and is returned in reponse to either a primary or secondary request. Interim responses and primary responses are distinguished by the value of the WordCount field.

Primary Request Format

UCHAR WordCount;

UCHAR MaxSetupCount;

USHORT Flags;

ULONG TotalParameterCount;

ULONG TotalDataCount;

ULONG MaxParameterCount;

ULONG MaxDataCount;

ULONG ParameterCount;

ULONG ParameterOffset;

ULONG DataCount;

ULONG DataOffset;

UCHAR SetupCount;

USHORT Function;

USHORT Setup[];

USHORT ByteCount;

UCHAR Pad1[];

UCHAR Parameters[];

UCHAR Pad2[];

UCHAR Data[];

WordCount ——The number of words following. Must be equal to 19 + SetupCount.

MaxSetupCount ——Specifies the maximum number of setup words that the server may return in the response.

Flags ——Specifies flags. None are currently defined.

TotalParameterCount ——Specifies the total number of parameter bytes that are being sent in the request.

TotalDataCount ——Specifies the total number of data bytes that are being sent in the request.

MaxParameterCount ——Specifies the maximum number of parameter bytes that the server may return in the response.

MaxDataCount ——Specifies the maximum number of data bytes that the server may return in the response.

ParameterCount ——Specifies the number of parameter bytes that are present in this SMB.

ParameterOffset ——Specifies the offset from the start of the SMB header to the parameter bytes.

DataCount ——Specifies the number of data bytes that are present in this SMB.

DataOffset ——Specifies the offset from the start of the SMB header to the data bytes.

SetupCount ——Specifies the number of setup words in the request.

Function ——Specifies the transaction function code.

Setup ——Supplies setup words, the contents of which are interpreted based on the function code.

ByteCount ——The number of bytes following.

Pad1 ——Zero to three pad bytes to align Parameters on a four-byte boundary. The pad bytes should be zero. If ParameterCount is zero, Pad1 is not present.

Parameters ——ParameterCount parameter bytes.

Pad2 ——Zero to three pad bytes to align Data on a four-byte boundary. The pad bytes should be zero. If DataCount is zero, Pad2 is not present.

Data ——DataCount data bytes.

Interim Response Format

UCHAR WordCount;

USHORT ByteCount;

WordCount ——Must contain the value 0.

ByteCount ——Must contain the value 0.

Secondary Request Format

UCHAR WordCount;

UCHAR Reserved1;

USHORT Reserved2;

ULONG TotalParameterCount;

ULONG TotalDataCount;

ULONG ParameterCount;

ULONG ParameterOffset;

ULONG ParameterDisplacement;

ULONG DataCount;

ULONG DataOffset;

ULONG DataDisplacement;

UCHAR Reserved3;

USHORT ByteCount;

UCHAR Pad1[];

UCHAR Parameters[];

UCHAR Pad2[];

UCHAR Data[];

WordCount ——Must contain the value 18.

Reserved1 ——Is a reserved field and should be zero.

Reserved2 ——Is a reserved field and should be zero.

TotalParameterCount ——Specifies the total number of parameter bytes that are being sent in the request.

TotalDataCount ——Specifies the total number of data bytes that are being sent in the request.

ParameterCount ——Specifies the number of parameter bytes that are present in this SMB.

ParameterOffset ——Specifies the offset from the start of the SMB header to the parameter bytes.

ParameterDisplacement ——Specifies the offset from the start of the overall parameter block to the parameter bytes that are contained in this message.

DataCount ——Specifies the number of data bytes that are present in this SMB.

DataOffset ——Specifies the offset from the start of the SMB header to the data bytes.

DataDisplacement ——Specifies the offset from the start of the overall data block to the data bytes that are contained in this message.

Reserved3 ——Is a reserved field and should be zero.

ByteCount ——The number of bytes following.

Pad1 ——Zero to three pad bytes to align Parameters on a four-byte boundary. The pad bytes should be zero. If ParameterCount is zero, Pad1 is not present.

Parameters ——ParameterCount parameter bytes.

Pad2 ——Zero to three pad bytes to align Data on a four-byte boundary. The pad bytes should be zero. If DataCount is zero, Pad2 is not present.

Data ——DataCount data bytes.

Response Format

UCHAR WordCount;

UCHAR Reserved1;

USHORT Reserved2;

ULONG TotalParameterCount;

ULONG TotalDataCount;

ULONG ParameterCount;

ULONG ParameterOffset;

ULONG ParameterDisplacement;

ULONG DataCount;

ULONG DataOffset;

ULONG DataDisplacement;

UCHAR SetupCount;

USHORT Setup[];

USHORT ByteCount;

UCHAR Pad1[];

UCHAR Parameters[];

UCHAR Pad2[];

UCHAR Data[];

WordCount ——Must contain the value 18 + SetupCount.

Reserved1 ——Is a reserved field and should be zero.

Reserved2 ——Is a reserved field and should be zero.

TotalParameterCount ——Specifies the total number of parameter bytes that are being sent in the response.

TotalDataCount ——Specifies the total number of data bytes that are being sent in the response.

ParameterCount ——Specifies the number of parameter bytes that are present in this SMB.

ParameterOffset ——Specifies the offset from the start of the SMB header to the parameter bytes.

ParameterDisplacement ——Specifies the offset from the start of the overall parameter block to the parameter bytes that are contained in this message.

DataCount ——Specifies the number of data bytes that are present in this SMB.

DataOffset ——Specifies the offset from the start of the SMB header to the data bytes.

DataDisplacement ——Specifies the offset from the start of the overall data block to the data bytes that are contained in this message.

SetupCount ——Specifies the number of setup words in the response.

Setup ——Supplies setup words, the contents of which are interpreted based on the function code.

ByteCount ——The number of bytes following.

Pad1 ——Zero to three pad bytes to align Parameters on a four-byte boundary. The pad bytes should be zero. If ParameterCount is zero, Pad1 is not present.

Parameters ——ParameterCount parameter bytes.

Pad2 ——Zero to three pad bytes to align Data on a four-byte boundary. The pad bytes should be zero. If DataCount is zero, Pad2 is not present.

Data ——DataCount data bytes.

�4.5.2 NT Create And X

The NT Create And X command is used to create or open a file or a directory. When EAs or an SD must be applied to the file, the NT Transact function Create With SD Or EAs is used.

The command code for NT Create And X is SMB_COM_NT_CREATE_ANDX.

Request Format

UCHAR WordCount;

UCHAR AndXCommand;

UCHAR AndXReserved;

USHORT AndXOffset;

UCHAR Reserved1;

USHORT NameLength;

ULONG Flags;

ULONG RootDirectoryFid;

ACCESS_MASK DesiredAccess;

LARGE_INTEGER AllocationSize;

ULONG FileAttributes;

ULONG ShareAccess;

ULONG CreateDisposition;

ULONG CreateOptions;

ULONG ImpersonationLevel;

UCHAR SecurityFlags;

USHORT ByteCount;

ASCII_OR_UNICODE Name[];

WordCount ——Must contain the value 24.

AndXCommand ——Specifies the command code for the next command in the chain, if any.

AndXReserved ——Is a reserved field and should be zero.

AndXOffset ——Specifies the offset to the next command in the chain.

Reserved1 ——Is a reserved field, and should be zero. Its purpose is to align the following fields on natural boundaries.

NameLength ——Specifies the length of the Name field, in bytes.

Note that this structure can't handle very long file names (approaching 4K), because we don't allow the name to be sent as data. The NT Create With SD Or EAs transaction must be used for very long names.

Flags ——Specifies the following flags:

NT_CREATE_REQUEST_OPLOCK ——When set, the client is requesting an oplock.

NT_CREATE_REQUEST_OPBATCH ——When set, the client is requesting a batch mode oplock.

NT_CREATE_OPEN_TARGET_DIR ——Equivalent to IO_OPEN_TARGET_DIRECTORY in the NT I/O system.

RootDirectoryFid ——Specifies the FID for a previously opened directory. If this field is not zero, the file name specified in Name is interpreted relative to the specified root directory. If this field is zero, the file name is interpreted relative to the root of the shared resource.

Note that RootDirectoryFid is subject to change format. While currently 32 bits, it may be changed to a 16 bit field (consistent with Fid fields in other SMBs) and a 16 bit reserved field.

DesiredAccess ——Specifies the type of access that the caller requires to the file. The following access types are defined:

DELETE ——The file may be deleted.

READ_CONTROL ——The SD and ownership information associated with the file may be read.

WRITE_DAC ——The discretionary SD associated with the file may be written.

WRITE_OWNER ——Ownership information associated with the file may be written.

FILE_READ_DATA ——Data may be read from the file.

FILE_WRITE_DATA ——Data may be written to the file.

FILE_EXECUTE ——Data may be faulted into memory from the file via paging I/O.

FILE_APPEND_DATA ——Data may only be appended to the file.

FILE_READ_ATTRIBUTES ——File attributes flags may be read.

FILE_WRITE_ATTRIBUTES ——File attributes flags may be written.

FILE_READ_EA ——Extended attributes associated with the file may be read.

FILE_WRITE_EA ——Extended attributes associated with the file may be written.

If the file being created or opened is a directory file, as specified in the CreateOptions field, then the following additional types of access may be requested:

FILE_LIST_DIRECTORY ——Files in the directory may be listed.

FILE_TRAVERSE ——The directory may be traversed. That is, it may be in the pathname of a file.

FILE_READ_DATA, FILE_WRITE_DATA, FILE_EXECUTE, and FILE_APPEND_DATA accesses are not valid when creating or opening a directory file.

AllocationSize ——Specifies the initial allocation size of the file, in bytes. This field is ignored unless the file is created, overwritten, or superseded.

FileAttributes ——Specifies the file attributes for the file. Any combination of flags is acceptable except that all other flags override the normal file attribute, FILE_ATTRIBUTE_NORMAL. File attributes are only applied to the file if it is created, superseded, or, in some cases, overwritten. See the description in the text below for more details.

The following attribute flags are defined:

FILE_ATTRIBUTE_NORMAL ——A normal file should be created.

FILE_ATTRIBUTE_READONLY ——A read-only file should be created.

FILE_ATTRIBUTE_HIDDEN ——A hidden file should be created.

FILE_ATTRIBUTE_SYSTEM ——A system file should be created.

FILE_ATTRIBUTE_ARCHIVE ——The file should be marked so that it will be archived.

FILE_ATTRIBUTE_CONTROL ——A control file should be created.

ShareAccess ——Specifies the type of share access that the caller would like to the file. The following share access flags are defined:

FILE_SHARE_READ ——Other open operations may be performed on the file for read access.

FILE_SHARE_WRITE ——Other open operations may be performed on the file for write access.

FILE_SHARE_DELETE ——Other open operations may be performed on the file for delete access.

CreateDisposition - Specifies the actions to be taken if the file does or does not already exist. The following disposition values are defined:

FILE_SUPERSEDE ——Indicates that if the file already exists then it should be superseded by the specified file. If it does not already exist then it should be created.

FILE_CREATE ——Indicates that if the file already exists then the operation should fail. If the file does not already exist then it should be created.

FILE_OPEN ——Indicates that if the file already exists it should be opened rather than creating a new file. If the file does not already exist then the operation should fail.

FILE_OPEN_IF ——Indicates that if the file already exists, it should be opened. If the file does not already exist then it should be created.

FILE_OVERWRITE ——Indicates that if the file already exists it should be opened and overwritten. If the file does not already exist then the operation should fail.

FILE_OVERWRITE_IF ——Indicates that if the file already exists it should be opened and overwritten. If the file does not already exist then it should be created.

CreateOptions ——Specifies the options that should be used when creating or opening the file. The following options are defined:

FILE_DIRECTORY_FILE ——On a create operation, indicates that the file being created is a directory file. On an open operation, indicates that the file being opened must be a directory file.

FILE_NON_DIRECTORY_FILE ——On a create operation, indicates that the file being created is not a directory file. On an open operation, indicates that the file being opened must not be a directory file.

FILE_WRITE_THROUGH ——Indicates that services that write data to the file must actually write the data to the file before the operation is considered to be complete.

Note that the FILE_NO_INTERMEDIATE_BUFFERING option is not exported via the SMB protocol. The NT redirector should convert this option to FILE_WRITE_THROUGH.

FILE_SEQUENTIAL_ONLY ——Indicates that the file will only be accessed sequentially.

FILE_OPEN_LINK ——Indicates that if the last component of the file name is a symbolic link that the link should be opened rather than chased.

FILE_OPEN_UNKNOWN_OBJECT ——Indicates that if an object that is unknown to the file system is encountered, that it should be opened rather than skipped over.

FILE_NO_EA_KNOWLEDGE ——Indicates that the client does not understand extended attributes.

FILE_EIGHT_DOT_THREE_ONLY ——Indicates that the client understands only 8.3 style filenames.

FILE_RANDOM_ACCESS ——Hints that the file is going to be accessed randomly, permitting the server to optimize its behaviour for that case.

FILE_DELETE_ON_CLOSE ——Indicates that the file is to be deleted when closed.

ImpersonationLevel ——Specifies the security impersonation level. Must be one of the following values. See the Distributed System Architecture, Subject Security Context Specification for a description of their meanings.

SecurityAnonymous

SecurityIdentification

SecurityImpersonation

SecurityDelegation

SecurityFlags ——Specifies the following security flags. See the Distributed System Architecture, Subject Security Context Specification for a detailed description of their meanings. The following flag values are defined:

SMB_SECURITY_DYNAMIC_TRACKING

SMB_SECURITY_EFFECTIVE_ONLY

ByteCount ——Specifies the length of the byte parameters for the request.

Name ——Supplies the name of the file to be created or opened. The name is in either ASCII format or Unicode format, depending on the state of flag SMB_FLAGS2_UNICODE of Flags2 in the SMB header. The client may use Unicode only if the server indicates in the Negotiate response that it supports Unicode. Note that the name string is not NUL-terminated.

Response Format

UCHAR WordCount;

UCHAR AndXCommand;

UCHAR AndXReserved;

USHORT AndXOffset;

UCHAR OplockLevel;

USHORT Fid;

ULONG CreateAction;

TIME CreationTime;

TIME LastAccessTime;

TIME LastWriteTime;

TIME ChangeTime;

ULONG FileAttributes;

LARGE_INTEGER AllocationSize;

LARGE_INTEGER EndOfFile;

USHORT FileType;

USHORT DeviceState;

BOOLEAN Directory;

USHORT ByteCount;

WordCount ——Must contain the value 34.

AndXCommand ——Specifies the command code for the next command in the chain, if any.

AndXReserved ——Is a reserved field and should be zero.

AndXOffset ——Specifies the offset to the next command in the chain.

OplockLevel ——Specifies the level of opportunistic lock granted to the opener.

Fid ——Specifies the identifier for the open file instance.

CreateAction ——Specifies the action taken with respect to creating or opening the file. This field is valid only if the operation was successful. The following action codes are defined:

FILE_SUPERSEDED ——The file existed and was superseded.

FILE_CREATED ——The file did not exist and was created.

FILE_OPENED ——The file existed and was opened.

FILE_OVERWRITTEN ——The file existed and was overwritten.

FILE_EXISTS ——The file existed.

FILE_DOES_NOT_EXIST ——The file does not exist.

CreationTime ——Specifies the time the file was created.

LastAccessTime ——Specifies the time the file was last accessed.

LastWriteTime ——Specifies the time the file was last written.

ChangeTime ——Specifies the time the file was last changed.

FileAttributes ——Specifies the file's attributes. For a description of this field, see the description of FileAttributes in the request format above.

AllocationSize ——Specifies the number of bytes allocated to the file.

EndOfFile ——Specifies the end-of-file offset for the file.

FileType —— Specifies the type of the file. Possible values are the same as for the like-named field in the SMB Open And X command response format:

FileTypeDisk ——Indicates a disk file or directory as defined in the FileAttributes field.

FileTypeByteModePipe ——Indicates a named pipe.

FileTypeMessageModePipe ——Indicates a named pipe in message mode.

FileTypePrinter ——Indicates a printer device.

FileTypeCommDevice ——Indicates a communications device.

DeviceState ——If FileType is FileTypeByteModePipe or FileTypeMessageModePipe, this field indicates the state of the IPC device. Otherwise, this field contains garbage. When valid, possible flag values are the same as for the like-named field in the SMB Open And X command response format:

DeviceStateBlocking ——If set, indicates that reads and writes return immediately if no data is available. If clear, reads and writes block if no data is available.

DeviceStateEndPoint ——If set, indicates the server end of the pipe. If clear, indicates the consumer end of the pipe.

DeviceStatePipeType ——This is a two-bit field. 00 indicates a byte stream pipe. 01 indicates a message pipe. Other values are undefined.

DeviceStateReadMode ——This is a two-bit field. 00 indicates that the pipe is to be read as a byte stream. 01 indicates that messages are to be read from the pipe. Other values are undefined.

DeviceStateIcount ——This is an eight-bit count to control pipe instancing, and is currently not applicable.

Directory ——Indicates whether the file is a directory.

Detailed Description

The NT Create And X command service either causes a new file (or directory) to be created, or it opens an existing file or device. The action taken is dependent on the name of the object being opened, whether the object already existed, and the specified create disposition value. A file handle is returned that can be used by subsequent service calls to manipulate the file itself or the data within the file.

If FILE_APPEND_DATA is the only desired-access flag specified, then the caller can only write to the end of the file. Any offset information on writes to the file is ignored. The file will automatically be extended as necessary for these types of write operations.

Specifying the FILE_WRITE_DATA desired-access flag for a file also allows writes beyond the end of the file to occur. The file is also automatically extended for these types of writes as well.

Access to a file may be shared among separate cooperating processes or threads by requesting that the file system open the file for shared access. This is accomplished through the flags in the ShareAccess field. Provided that both file openers have the privilege to access the file in the specified manner, the file can be successfully opened and shared. If the caller does not specify FILE_SHARE_READ, FILE_SHARE_WRITE, or FILE_SHARE_DELETE, then no other open operations may be performed on the file.

In order for the file to be successfully opened, the requested access mode to the file must be compatible with the way in which other opens to the file have been made. That is, the desired access mode to the file must not conflict with the accesses that other openers of the file have disallowed.

The FILE_SUPERSEDE disposition value specifies that if the file does not already exist, it is to be created. If the file already exists, then it should be superseded. Superseding a file requires that the accessor have delete access to the existing file. That is, the existing file is effectively deleted and then recreated. This implies that if someone else already has the file open, they have specified that the file may be deleted by another file opener. This is done by specifying ShareAccess with the FILE_SHARE_DELETE flag set.

The FILE_OVERWRITE_IF disposition value is much like the FILE_SUPERSEDE disposition value. If the file exists, then it will be overwritten; if it does not already exist then it will be created. Overwriting a file is semantically equivalent to a supersede operation except that it requires write access to the file rather than delete access. That is, the requestor must have write access to the file and if someone else already has the file open, they must have specified that the file may be written by another file opener. This is done by specifying a ShareAccess parameter with the FILE_SHARE_WRITE flag set. Another difference between an overwrite and a supersede is that the specified file attributes are logically OR'd with those already on the file. That is, the caller may not turn off any flags already set in the attributes but may turn others on.

The FILE_OVERWRITE disposition value performs exactly the same operation as a FILE_OVERWRITE_IF, except that if the file does not already exist the operation will fail.

The FILE_OPEN_LINK option specifies that if the last component of a pathname is a symbolic link, then the link file itself should be opened rather than chasing it. A symbolic link is a file identified by the following characteristics:

	o	The file's FILE_ATTRIBUTE_CONTROL attribute flag is set.

	o	The file has an EA whose name is ".FAMILY_IDS" and whose value has a type of EAT_FAMILY, a family count of one, and a family ID of 42.

	o	The file has an EA whose name is "SYMBOLIC_LINK_VALUE" and whose value is the fully qualified pathname to the target file.

The FILE_OPEN_LINK option may be used to open a file that represents a DFS exit path as well, provided that the file is the last component of the pathname. A DFS exit path is a file identified by the following characteristics:

	o	The file's FILE_ATTRIBUTE_CONTROL attribute flag is set.

	o	The file has an EA whose name is ".FAMILY_IDS" and whose value has a type of EAT_FAMILY, a family count of one, and a family ID of 69.

The FILE_OPEN_UNKNOWN_OBJECT option specifies that if the file system encounters a file in the file name path that has its FILE_ATTRIBUTE_CONTROL attribute flag set, but whose other characteristics do not match one of the symbolic link or DFS exit path descriptions above, then the file should be opened rather than continuing the pathname search. If this type of file is encountered and the option is specified, then the response field CreateAction is set to FILE_OPENED_UNKNOWN_OBJECT. The Query File Information command may be used to obtain the remainder of the unparsed file name string.

When opening a named pipe file, the Name field of the request should contain only the name of the relative name of the pipe. This contrasts the Open AndX and Open2 SMBs in which the pipe name is prepended by the string "\PIPE\".

�4.5.3 NT Create With Security Descriptor Or EAs

The NT Create With SD Or EAs command is used to create or open a file or a directory, when EAs or an SD must be applied to the file.

NT Create With SD Or EAs is implemented as an NT Transact function. The function code for NT Create With SD Or EAs is NT_TRANSACT_CREATE.

Request Setup Format

None.

Request Parameters Format

ULONG Flags;

ULONG RootDirectoryFid;

ACCESS_MASK DesiredAccess;

LARGE_INTEGER AllocationSize;

ULONG FileAttributes;

ULONG ShareAccess;

ULONG CreateDisposition;

ULONG CreateOptions;

ULONG SecurityDescriptorLength;

ULONG EaLength;

ULONG NameLength;

ULONG ImpersonationLevel;

UCHAR SecurityFlags;

ASCII_OR_UNICODE Name[];

Flags ——Specifies flags. See the description of the like-named field in NT Create And X for the list of valid flags.

RootDirectoryFid ——Specifies the FID for a previously opened directory. If this field is not zero, the file name specified in Name is interpreted relative to the specified root directory. If this field is zero, the file name is interpreted relative to the root of the shared resource.

Note that RootDirectoryFid is subject to change format. While currently 32 bits, it may be changed to a 16 bit field (consistent with Fid fields in other SMBs) and a 16 bit reserved field.

DesiredAccess ——Specifies the type of access that the caller requires to the file. See the description of NT Create And X for the list of valid access types.

AllocationSize ——Specifies the initial allocation size of the file, in bytes. This field is ignored unless the file is created, overwritten, or superseded.

FileAttributes ——Specifies the file attributes for the file. See the description of NT Create And X for the list of valid file attributes.

ShareAccess ——Specifies the type of share access that the caller would like to the file. See the description of NT Create And X for the list of valid share access types.

CreateDisposition - Specifies the actions to be taken if the file does or does not already exist. See the description of NT Create And X for the list of valid actions.

CreateOptions ——Specifies the options that should be used when creating or opening the file. See the description of NT Create And X for the list of valid options.

SecurityDescriptorLength ——Specifies the total length in bytes of the security descriptor that should be set on the file, if it is created. The setting of the SD is done as an atomic operation with the creation of the file.

EaLength ——Specifies the total length in bytes of the list of EAs that should be set on the file if it is created. The setting of the EAs is done as an atomic operation with the creation of the file.

NameLength ——Specifies the length of the Name field, in bytes.

ImpersonationLevel ——Specifies the security impersonation level. See the description of NT Create And X for the list of valid values.

SecurityFlags ——Specifies flags. See the description of NT Create And X for the list of valid flags.

Name ——Supplies the name of the file to be created or opened. The name is in either ASCII format or Unicode format, depending on the state of flag SMB_FLAGS2_UNICODE of Flags2 in the SMB header. The client may use Unicode only if the server indicates in the Negotiate response that it supports Unicode. Note that the name string is not NUL-terminated.

Request Data Format

UCHAR SecurityDescriptor[];

UCHAR Padding[];

UCHAR EaList[];

SecurityDescriptor ——The security descriptor to be applied to the file, if it is created. The length of the SD is indicated by the SecurityDescriptorLength parameter. If SecurityDescriptorLength is zero, the SecurityDescriptor and Padding fields are not present. The format of SecurityDescriptor is the self-relative format described in the Distributed System Architecture, Object Security Architecture specification.

Padding ——Zero to three bytes of padding, to align the EaList field on a four-byte boundary. If either of SecurityDescriptorLength or EaLength is zero, this field is not present.

EaList ——The list of EAs to be applied to the file, if it is created. The length of the EA list is indicated by the EaLength parameter. If EaLength is zero, the Padding and EaList fields are not present. The format of EaList is the same as that for FileFullEaInformation in the NT I/O system.

Response Setup Format

None.

Response Parameters Format

UCHAR OplockLevel;

UCHAR Reserved;

USHORT Fid;

ULONG CreateAction;

ULONG EaErrorOffset;

TIME CreationTime;

TIME LastAccessTime;

TIME LastWriteTime;

TIME ChangeTime;

ULONG FileAttributes;

LARGE_INTEGER AllocationSize;

LARGE_INTEGER EndOfFile;

USHORT FileType;

USHORT DeviceState;

BOOLEAN Directory;

OplockLevel ——Specifies the level of opportunistic lock granted to the opener.

Reserved ——Is a reserved field, and should be zero.

Fid ——Specifies the identifier for the open file instance.

CreateAction ——Specifies the action taken with respect to creating or opening the file. This field is valid only if the operation was successful. See the description of NT Create And X for the list of valid actions.

EaErrorOffset ——Specifies the offset in bytes into the input EA list of the EA that was invalid. This field is valid only when the input EA list is invalid.

Need to define which status codes imply that EaErrorOffset is valid.

CreationTime ——Specifies the time the file was created.

LastAccessTime ——Specifies the time the file was last accessed.

LastWriteTime ——Specifies the time the file was last written.

ChangeTime ——Specifies the time the file was last changed.

FileAttributes ——Specifies the file's attributes. For a description of this field, see the description of FileAttributes in the NT Create And X request format above.

AllocationSize ——Specifies the number of bytes allocated to the file.

EndOfFile ——Specifies the end-of-file offset for the file.

FileType —— Specifies the type of the file. See the description of NT Create And X for the list of valid file types.

DeviceState —— Indicates the state of an IPC device. See the description of NT Create And X for the details of this field.

Directory ——Indicates whether the file is a directory.

Response Data Format

None.

Detailed Description

The NT Create With SD Or EAs command is semantically identical to the NT Create And X command, with the following additions:

If a security descriptor is supplied, then the SD is applied to the file as an atomic operation. Note that the SD is only set on the file if the file is created, superseded, or overwritten. If setting the SD on the file incurs an error, then the file is not created and an appropriate error is returned.

The security descriptor is a structure of type SECURITY_DESCRIPTOR:

typedef struct {

	UCHAR Revision;

	UCHAR Reserved;

	SECURITY_DESCRIPTOR_CONTROL Control;

	PSID Owner;

	PSID Group;

	PACL Sacl;

	PACL Dacl;

} SECURITY_DESCRIPTOR;

Revision ——Contains the revision level of the security descriptor. This allows this structure to be passed between systems or stored on disk even though it is expected to change in the future. The current revision is 1.

Reserved ——Should be zero.

Control ——A set of flags which qualify the meaning of the security descriptor or individual fields of the security descriptor.

SE_OWNER_DEFAULTED ——This boolean flag, when set, indicates that the SID pointed to by the Owner field was provided by a defaulting mechanism rather than explicitly provided by the original provider of the security descriptor. This may affect the treatment of the SID with respect to inheritence of an owner.

SE_GROUP_DEFAULTED ——This boolean flag, when set, indicates that the SID in the Group field was provided by a defaulting mechanism rather than explicitly provided by the original provider of the security descriptor. This may affect the treatment of the SID with respect to inheritence of a primary group.

SE_DACL_PRESENT ——This boolean flag, when set, indicates that the security descriptor contains a discretionary ACL. If this flag is set and the Dacl field of the security descriptor is null, then a null ACL is explicitly being specified.

SE_DACL_DEFAULTED ——This boolean flag, when set, indicates that the ACL pointed to by the Dacl field was provided by a defaulting mechanism rather than explicitly provided by the original provider of the security descriptor. This may affect the treatment of the ACL with respect to inheritence of an ACL. This flag is ignored if the SE_DACL_PRESENT flag is not set.

SE_SACL_PRESENT ——This boolean flag, when set, indicates that the security descriptor contains a system ACL pointed to by the Sacl field. If this flag is set and the Sacl field of the security descriptor is null, then an empty (but present) ACL is being specified.

SE_SACL_DEFAULTED ——This boolean flag, when set, indicates that the ACL pointed to by the Sacl field was provided by a defaulting mechanism rather than explicitly provided by the original provider of the security descriptor. This may affect the treatment of the ACL with respect to inheritence of an ACL. This flag is ignored if the SE_SACL_PRESENT flag is not set.

SE_SELF_RELATIVE ——This boolean flag, when set, indicates that the security descriptor is in self-relative form. In this form, all fields of the security descriptor are contiguous in memory and all pointer fields are expressed as offsets from the beginning of the security descriptor. This flag should always be set in security descriptors within SMBs.

Owner ——is an offset to a SID representing an object's owner. If this field is null, then no owner SID is present in the security descriptor.

Group ——is an offset to a SID representing an object's primary group. If this field is null, then no primary group SID is present in the security descriptor.

Sacl ——is an offset to a system ACL. This field value is only valid if the SE_SACL_PRESENT control flag is set. If the SE_SACL_PRESENT flag is set and this field is null, then a null ACL is specified.

Dacl ——is an offset to a discretionary ACL. This field value is only valid if the SE_DACL_PRESENT control flag is set. If the SE_DACL_PRESENT flag is set and this field is null, then a null ACL (unconditionally granting access) is specified.

See Distributed System Architecture, Security IDentifier Architecture Specification and Distributed System Architecture, Access Control List Architecture Specification for the structure of SIDs and ACLs respectively.

If a list of EAs is supplied, then those EAs are applied to the file as an atomic operation. Note that the EAs are only set on the file if the file is created, superseded, or overwritten. If setting the EAs on the file incurs an error, then the file is not created, an appropriate error is returned, and the response field EaErrorOffset is set to the offset into the EA buffer of the EA that caused the error.

The EA list is a sequence of elements of type FILE_FULL_EA_INFORMATION:

typedef struct {

	ULONG NextEntryOffset;

	UCHAR Flags;

	UCHAR EaNameLength;

	USHORT EaValueLength;

	ASCIIZ EaName[];

	CHAR EaValue[];

} FILE_FULL_EA_INFORMATION;

NextEntryOffset ——Specifies the offset, in bytes, from the start of the current entry to the next entry in the list. If this is the last entry in the list, this field is zero. Each entry in the list must be longword aligned, so NextEntryOffset must be a multiple of four.

Flags ——Specifies flags to be associated with the EA. FILE_NEED_EA is the only flag currently defined. All other flags should be zero.

EaNameLength ——Specifies the length of the EA's name field, excluding the NUL termination character.

EaValueLength ——Specifies the length of the EA's value field.

EaName ——Specifies the name of the EA in ASCII characters. The name is never in Unicode characters. This field is NUL-terminated.

EaValue ——Specifies the value of the EA. Note that this field begins immediately after the name field's NUL termination character, without padding for alignment.

�4.5.4 NT I/O Control

The NT I/O Control command allows device and file system control functions to be transferred transparently from client to server.

This command is implemented as an NT Transact function. The function code for NT I/O Control is NT_TRANSACT_IOCTL.

Request Setup Format

ULONG FunctionCode;

USHORT Fid;

BOOLEAN IsFsctl;

FunctionCode ——Specifies the device or file system control code.

Fid —— Specifies the identifier for the open file instance.

IsFsctl ——Indicates whether the command is a device control (FALSE) or a file system control (TRUE).

Request Parameters Format

The request parameters buffer is the first buffer.

Request Data Format

The request data buffer is the second buffer.

Response Setup Format

None.

Response Parameters Format

The response parameters buffer is the first buffer.

Response Data Format

The response data buffer is the second buffer.

�4.5.5 NT Notify Directory Change

The NT Notify Directory Change command is used to monitor changes to a directory. The command completes when a change of the specified type is made in the specified directory.

FILE_LIST_DIRECTORY access to the target directory is required.

The NT Notify Directory Change command is implemented as an NT Transact function. The function code for NT Notify Directory Change is NT_TRANSACT_NOTIFY_CHANGE.

Request Setup Format

ULONG CompletionFilter;

USHORT Fid;

BOOLEAN WatchTree;

UCHAR Reserved;

CompletionFilter ——Specifies a set of flags that indicate the types of operations on the directory or on files in the directory that cause the command to complete. The following flags are defined (all undefined flags should be zero):

FILE_NOTIFY_CHANGE_FILE_NAME ——Specifies that the command should complete if a file is added, deleted, or renamed.

FILE_NOTIFY_CHANGE_DIR_NAME ——Specifies that the command should complete if a subdirectory is added, deleted, or renamed.

FILE_NOTIFY_CHANGE_ATTRIBUTES ——Specifies that the command should complete if the attributes of a file or subdirectory are changed.

FILE_NOTIFY_CHANGE_SIZE ——Specifies that the command should complete if the allocation size or the end of file marker for a file are changed.

FILE_NOTIFY_CHANGE_LAST_WRITE ——Specifies that the command should complete if the last write time for a file or subdirectory is changed.

FILE_NOTIFY_CHANGE_LAST_ACCESS ——Specifies that the command should complete if the last access time for a file or subdirectory is changed.

FILE_NOTIFY_CHANGE_CREATION ——Specifies that the command should complete if the creation time for a file or subdirectory is changed.

FILE_NOTIFY_CHANGE_EA ——Specifies that the command should complete if the EAs for a file or subdirectory are changed.

FILE_NOTIFY_CHANGE_SECURITY ——Specifies that the command should complete if the security information for a file or subdirectory is changed

Fid ——Specifies the identifier for the open file instance. The open file must be a directory.

WatchTree ——Specifies whether all changes to files below the directory should also be reported.

Reserved ——Is a reserved field and should be zero.

Request Parameters Format

None.

Request Data Format

None.

Response Setup Format

None.

Response Parameters Format

The response parameters buffer is the change data.

Response Data Format

None.

Detailed Description

The NT Notify Directory Change command notifies the client when the directory specified by Fid is modified. It also returns the name(s) of the file(s) that changed. The command completes once the directory has been modified based on the supplied CompletionFilter. The command is a "single shot" and therefore needs to be reissued to watch for more directory changes.

A directory file must be opened before this command may be used. Once the directory is open, this command may be used to begin watching files and subdirectories in the specified directory for changes. The first time the command is issued, the MaxParameterCount field in the NT Transact header determines the size of the buffer that will be used at the server to buffer directory change information between issuances of the NT Notify Directory Change command.

When a change that is in the CompletionFilter is made to the directory, the command completes. The names of the files that have changed since the last time the command was issued are returned to the client. The ParameterCount field of the NT Transact response indicates the number of bytes that are being returned. If too many files have changed since the last time the command was issued, then zero bytes are returned and an alternate status code is returned in the Status field of the response. If NT status codes were negotiated, then Status will contain STATUS_NOTIFY_ENUM_DIR. If NT status codes were not negotitated, then ErrorClass will be 1 and Error will be ERROR_NOTIFY_ENUM_DIR, which is a new Win32 error code.

The format of the returned data is defined by the following structure:

typedef struct {

	ULONG NextEntryOffset;

	ULONG Action;

	ULONG FileNameLength;

	ASCII_OR_UNICODE FileName[];

} FILE_NOTIFY_INFORMATION;

NextEntryOffset ——Specifies the offset, in bytes, from the start of the current entry to the next entry in the list. If this is the last entry in the list, this field is zero. Each entry in the list must be longword aligned, so NextEntryOffset must be a multiple of four.

Action ——Specifies what happened to cause this entry to be inserted. The following values are possible:

FILE_ACTION_ADDED ——The file was added to the directory.

FILE_ACTION_REMOVED ——The file was removed from the directory.

FILE_ACTION_MODIFIED ——The file was modified.

FILE_ACTION_RENAMED_OLD_NAME ——The file was renamed; this entry supplies the old name.

FILE_ACTION_RENAMED_NEW_NAME ——The file was renamed; this entry supplies the new name.

FileNameLength ——Specifies the length, in bytes, of the name of the file that changed.

FileName ——Specifies the name of the file that changed. The name is in either ASCII format or Unicode format, depending on the state of flag SMB_FLAGS2_UNICODE of Flags2 in the SMB header. The client may use Unicode only if the server indicates in the Negotiate response that it supports Unicode. Note that the name is not null-terminated.

If a file is renamed within a single directory, two entries are returned: one specifying the old name of the file and one specifying the new name of the file. If a file is renamed from the directory being monitored to another directory, only a single entry with an Action of FILE_ACTION_REMOVED is returned. If a file is renamed from another directory to the directory being monitored, only a single entry with an Action of FILE_ACTION_ADDED is returned.

�4.5.6 NT Cancel

The NT Cancel command allows a client to cancel an in-progress request. The request to be canceled is identified by matching the UID/TID/PID/MID combination in the header of the original SMB with those in the Cancel SMB.

If the specified request is still in progress at the server when the Cancel request is received, the server cancels the request and sends a response to that request with a distinguished status code. The server does not send a response to the cancel SMB.

The command code for NT Cancel is SMB_COM_NT_CANCEL.

Request Format

UCHAR WordCount;

USHORT ByteCount;

WordCount ——Must contain the value 0.

ByteCount ——Must contain the value 0.

Response Format

UCHAR WordCount;

USHORT ByteCount;

WordCount ——Must contain the value 0.

ByteCount ——Must contain the value 0.

�4.5.7 NT Query Security Descriptor

The NT Query Security Descriptor command allows the client to retrieve the security descriptor on a file.

This command is implemented as an NT Transact function. The function code for NT Query Security Descriptor is NT_TRANSACT_QUERY_SECURITY_DESC.

Request Setup Format

None.

Request Parameters Format

USHORT Fid;

USHORT Reserved;

SECURITY_INFORMATION SecurityInformation;

Fid ——Specifies the identifier of the open file instance.

Reserved ——Must contain the value 0.

SecurityInformation ——Flags indicating which security descriptor components are being referenced.

OWNER_SECURITY_INFORMATION ——When set, indicates the owner ID of the object is being referenced.

GROUP_SECURITY_INFORMATION ——When set, indicates the primary group ID of the object is being referenced.

DACL_SECURITY_INFORMATION ——When set, indicates the discretionary ACL of the object is being referenced.

SACL_SECURITY_INFORMATION ——When set, indicates the system ACL of the object is being referenced.

Request Data Format

None.

Response Setup Format

None.

Response Parameters Format

ULONG LengthNeeded;

LengthNeeded ——Specifies the size of the data buffer needed to hold the descriptor data.

Response Data Format

The response data buffer is the security descriptor. See the description of NT Create with Security Descriptor or EAs for the data format.

�4.5.8 NT Set Security Descriptor

The NT Set Security Descriptor command allows the client to change the security descriptor on a file.

This command is implemented as an NT Transact function. The function code for NT Set Security Descriptor is NT_TRANSACT_SET_SECURITY_DESC.

Request Setup Format

USHORT Fid;

USHORT Reserved;

SECURITY_INFORMATION SecurityInformation;

Fid ——Specifies the identifier of the open file instance.

Reserved ——Must contain the value 0.

SecurityInformation ——Flags indicating which security descriptor components are being referenced. See the description of the like-named field in NT Query Security Descriptor.

Request Parameters Format

None.

Request Data Format

The request data buffer is the security descriptor. See the description of NT Create with Security Descriptor or EAs for the data format.

Response Setup Format

None.

Response Parameters Format

None.

Response Data Format

None.

�4.5.9 NT Rename

The NT Rename command allows the client to change the name of a file.

This command is implemented as an NT Transact function. The function code for NT Rename is NT_RENAME.

Request Setup Format

None.

Request Parameters Format

USHORT Fid;

USHORT RenameFlags;

ASCII_OR_UNICODE NewName[];

Fid ——Specifies the identifier of the open file instance.

RenameFlags ——Specifies flags:

SMB_RENAME_REPLACE_IF_EXISTS ——When set, permits overwriting of existing files with the same name as NewName.

Name ——Supplies the name of the file to be created or opened. The name is in either ASCII format or Unicode format, depending on the state of flag SMB_FLAGS2_UNICODE of Flags2 in the SMB header. The client may use Unicode only if the server indicates in the Negotiate response that it supports Unicode. Note that the name string is not null-terminated. The length of the name is TotalParameterCount - sizeof(Fid) - sizeof(RenameFlags).

Request Data Format

None.

Response Setup Format

None.

Response Parameters Format

None.

Response Data Format

None.

�5. Outstanding Issues

This section details unresolved issues and questions regarding the NT SMB protocol.

5.1 Network Code Page

Do we need to expose client/server/network code page in the protocol, or is it enough to have this available at each node via some other mechanism?

5.2 FileLinkInformation

Is adding a link a reasonable candidate for remoting? If so, what restrictions, if any, should be placed on the target name? The I/O specification says that the target name must be fully qualified. What does this mean over the network?

5.3 Flags2 vs. NT Create CreateOptions

What happens when the SMB header Flags2 and NT Create AndX CreateOptions fields disagree about long filenames and extended attributes: SMB_FLAGS2_KNOWS_LONG_NAMES vs. FILE_EIGHT_DOT_THREE_ONLY and SMB_FLAGS2_KNOWS_EAS vs FILE_NO_EA_KNOWLEDGE?

5.4 Querying EAs

Do we need a new SMB, or can we do everything with the current SMB? Note that NtQueryEaFile is a resumable API, and also allows the caller to start the scan at a specified EA index.

�6. Revision History

Original (subset) draft, Revision 0.9, March 1, 1991

First widely distributed draft, Revision 1.0, March 15, 1991

Major reduction in scope, Revision 2.0, August 22, 1991

Unknown changes, Revision 2.1, December 10, 1991

Updated to reflect current state of code, Revision 2.2, June 8, 1992

Minor fixes, Revision 2.21, June 11, 1992

Corrections concerning Unicode string alignment and NT Transact responses, Revision 2.22, June 19, 1992

added server CAP_LOCK_AND_READ capability, Revision 2.23, August 10, 1992

corrected SMB File Notify Action values, Revision 2.24, August 11, 1992

added server time fileds to Negotiate Response format, Revision 2.25, August 24, 1992

Microsoft Corporation Company Confidential

Microsoft Corporation Company Confidential

NT LAN Manager SMB File Sharing Protocol Extensions	�

NT LAN Manager SMB File Sharing Protocol Extensions	�

Microsoft Corporation Company Confidential

Microsoft Corporation Company Confidential

NT LAN Manager SMB File Sharing Protocol Extensions	�

NT LAN Manager SMB File Sharing Protocol Extensions	�

Microsoft Corporation Company Confidential

Microsoft Corporation Company Confidential

