X Input Device Extension Library

Mark Patrick, Ardent Computer
George Sachs
Hewlett-Packard

X Input Device Extension Library
by Mark Patrick

George Sachs

Hewlett-Packard

X Version 11, Release 7.7

Version 1.0
Copyright © 1989, 1990, 1991 Hewlett-Packard Company, Ardent Computer

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in al copies. Ardent and Hewlett-Packard make no representations about the suitability for any
purpose of the information in this document. It is provided "asis' without express or implied warranty.

Copyright © 1989, 1990, 1991, 1992 X Consortium

Permission is hereby granted, free of charge, to any person obtaining acopy of this software and associated documentation files (the * Software’’),
to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall beincluded in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGSIN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.

Table of Contents

1. Input EXteNsionccccceeevevnnnnn.
OVEINVIEW .o

Design Approach
Core Input Devices

Extension Input Devices ..

Using EXtENsIoN INPUE DEVICESuiiiiiiiiiee et

Library Extension Requests

Window Manager FUNCLIONScooeuuniiiiiiiei ettt

Eventscocoeeiii,
Event Handling Functions
A. Input Extension Protocol Encoding

Chapter 1. Input Extension

Overview

This document describes an extension to the X11 server. The purpose of this extension is to support the
use of additional input devices beyond the pointer and keyboard devices defined by the core X protocol.
Thisfirst section gives an overview of the input extension. The following sections correspond to chapters
9, 10, and 11, “"Window and Session Manager Functions', " Events", and ~"Event Handling Functions" of
the " Xlib - C Language Interface" manual and describe how to use the input device extension.

Design Approach

The design approach of the extension is to define functions and events anal ogous to the core functions and
events. This allows extension input devices and events to be individually distinguishable from each other
and from the core input devices and events. These functions and events make use of adeviceidentifier and
support the reporting of n-dimensional motion data as well as other data that is not currently reportable
viathe core input events.

Core Input Devices

The X server core protocol supports two input devices: a pointer and a keyboard. The pointer device has
two major functions. First, it may be used to generate motion information that client programs can detect.
Second, it may also be used to indicate the current location and focus of the X keyboard. To accomplish
this, the server echoes a cursor at the current position of the X pointer. Unless the X keyboard has been
explicitly focused, this cursor also shows the current location and focus of the X keyboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer arereferred to in thisdocument asthe core devices, and theinput eventsthey
generate(KeyPress , KeyRel ease , ButtonPress , ButtonRel ease , andMbti onNo-
tify) areknown asthecoreinput events. All other input devices are referred to as extension input de-
vices, and theinput eventsthey generate are referred to as extension input events. Thisinput extension does
not change the behavior or functionality of the core input devices, core events, or core protocol requests,
with the exception of the core grab requests. These requests may affect the synchronization of eventsfrom
extension devices. See the explanation in the section titled " Event Synchronization and Core Grabs."

Selection of the physical devicesto beinitially used by the server asthe core devicesisleft implementation
dependent. Functions are defined that allow client programs to change which physical devices are used
as the core devices.

Extension Input Devices

The input extension controls access to input devices other than the X keyboard and X pointer. It allows
client programs to select input from these devices independently from each other and independently from
the core devices. Input events from these devices are of extension types(Devi ceKeyPress , De-
vi ceKeyRel ease , Devi ceButtonPress , Devi ceButtonRel ease , Devi ceMdti on-
Not i fy , andsoon)and contain adeviceidentifier so that events of the sametype coming from different
input devices can be distinguished.

Extension input events are not limited in size by the size of the server 32-byte wire events. Extension
input events may be constructed by the server sending as many wire-sized events as necessary to return the

Input Extension

information required for that event. The library event reformatting routines are responsible for combining
these into one or more client XEvents.

Any input device that generates key, button, or motion data may be used as an extension input device.
Extension input devices may have zero or more keys, zero or more buttons, and may report zero or more
axes of motion. Motion may be reported as rel ative movements from a previous position or as an absolute
position. All valuators reporting motion information for a given extension input device must report the
same kind of motion information (absolute or relative).

This extension is designed to accommodate new types of input devices that may be added in the future.
The protocol requests that refer to specific characteristics of input devices organize that information by
input device classes. Server implementors may add new classes of input devices without changing the
protocol reguests.

All extension input devices are treated like the core X keyboard in determining their location and focus.
The server does not track the location of these devices on an individual basis and, therefore, does not echo
acursor to indicate their current location. Instead, their location is determined by the location of the core
X pointer. Like the core X keyboard, some may be explicitly focused. If they are not explicitly focused,
their focus is determined by the location of the core X pointer.

Input Device Classes
Some of theinput extension requests divide input devices into classes based on their functiondity. Thisis
intended to allow new classes of input devicesto be defined at alater time without changing the semantics
of these functions. The following input device classes are currently defined:

KEY The device reports key events.

BUTTON The device reports button events.

VALUA- The device reports valuator datain motion events.
TOR

PROXIMI- The device reports proximity events.

TY

FOCUS The device can be focused.

FEEDBACK The device supports feedbacks.

Additional classes may be added in the future. Functions that support multiple input classes, such as the
XLi st | nput Devi ces function that lists all available input devices, organize the data they return by
input class. Client programsthat use these functions should not access dataunlessit matches aclass defined
at the time those clients were compiled. In this way, new classes can be added without forcing existing
clients that use these functions to be recompiled.

Using Extension Input Devices

A client that wishesto access an input device does so through the library functions defined in the following
sections. A typical sequence of requests that a client would make is as follows:

e XLi st | nput Devi ces - lists al of the available input devices. From the information returned by
this request, determine whether the desired input device is attached to the server. For a description of
the XLi st | nput Devi ces request, see the section entitled "Listing Available Devices."

Input Extension

XOpenDevi ce - requests that the server open the device for access by this client. This request re-
turnsan XDevi ce structure that is used by most other input extension requeststo identify the specified
device. For adescription of the XOpenDevi ce request, see the section entitled "Enabling and Dis-
abling Extension Devices."

Determine the event types and event classes needed to select the desired input extension events, and
identify them when they are received. Thisis done via macros whose name corresponds to the desired
event, for example, Devi ceKeyPr ess . For adescription of these macros, see the section entitled
“Selecting Extension Device Events."

XSel ect Ext ensi onEvent - selects the desired events from the server. For a description of the
XSel ext Ext ensi onEvent request, see the section entitled *" Selecting Extension Device Events."

XNext Event - receives the next available event. This is the core XNext Event function provided
by the standard X libarary.

Other requests are defined to grab and focus extension devices, to change their key, button, or modifier
mappings, to control the propagation of input extension events, to get motion history from an extension
device, and to send input extension eventsto another client. These functions are described in the following
sections.

Library Extension Requests

Extension input devices are accessed by client programs through the use of new protocol requests. The
following requests are provided as extensions to Xlib. Constants and structures referenced by these func-
tionsmay befound inthefiles<X11/ ext ensi ons/ Xl . h>and <X11/ ext ensi ons/ Xl nput . h>,
which are attached to this document as Appendix A.

The library will return NoSuchExt ensi on if an extension request is made to a server that does not
support the input extension.

Input extension requests cannot be used to access the X keyboard and X pointer devices.

Window Manager Functions

This section discusses the following X Input Extension Window Manager topics:

Changing the core devices

Event synchronization and core grabs
Extension active grabs

Passively grabbing a key

Passively grabbing a button

Thawing adevice

Controlling device focus

Controlling device feedback

Ringing a bell on an input device

Controlling device encoding

Input Extension

« Controlling button mapping

 Obtaining the state of adevice

Changing the Core Devices

These functions are provided to change which physical deviceis used asthe X pointer or X keyboard.

Note

Using these functions may change the characteristics of the core devices. The new pointer device
may have adifferent number of buttonsfrom the old one, or the new keyboard device may havea
different number of keys or report adifferent range of keycodes. Client programs may be running
that depend on those characteristics. For example, aclient program could allocate an array based
on the number of buttons on the pointer device and then use the button numbersreceived in button
events as indices into that array. Changing the core devices could cause such client programs
to behave improperly or to terminate abnormally if they ignore the ChangeDevi ceNot i fy
event generated by these requests.

These functions change the X keyboard or X pointer device and generate an XChangeDevi ceNot i fy
event and a Mappi ngNot i fy event. The specified device becomes the new X keyboard or X pointer
device. Thelocation of the core device does not change as aresult of this request.

Theserequestsfail andreturn Al r eady Gr abbed if either the specified device or the coredeviceit would
replace are grabbed by some other client. They fail and return Gr abFr ozen if either deviceisfrozen by
the active grab of another client.

These requests fail with a BadDevi ce error if the specified device is invalid, has not previously been
opened viaXOpenDevi ce , orisnot supported as a core device by the server implementation.

Once the device has successfully replaced one of the core devices, it istreated as a core device until itisin
turn replaced by another ChangeDevi ce request or until the server terminates. The termination of the
client that changed the device will not cause it to change back. Attemptsto usethe XCl oseDevi ce
request to close the new core device will fail with aBadDevi ce error.

To change which physical device is used as the X keyboard, use the XChangeKeyboar dDevi ce
function. The specified device must support input class Keys (asreportedintheLi st | nput Devi ces
request) or the request will fail with aBadMat ch error.

i nt XChangeKeyboar dDevi ce(*di splay, *device);
display Specifies the connection to the X server.
device Specifies the desired device.

If no error occurs, XChangeKeyboar dDevi ce returns Success . A ChangeDevi ceNotify
event with the request field set to NewKeyboar d is sent to all clients selecting that event. A Mappi ng-

Not i f y event with the request field set to Mappi ngKeyboar d issent to all clients. The requested de-
vice becomes the X keyboard, and the old keyboard becomes available as an extension input device. The
focus state of the new keyboard is the same as the focus state of the old X keyboard.

XChangeKeyboar dDevi ce can generate Al r eadyGr abbed , BadDevi ce , BadMat ch ,
and G- abFr ozen errors.

To changewhich physical deviceisused asthe X pointer, usethe XChangePoi nt er Devi ce function.
The specified device must support input class Val uat or s (asreportedinthe XLi st | nput Devi ces
request) and report at least two axes of motion, or the request will fail with a BadMat ch error. If the

Input Extension

specified device reports more than two axes, the two specified in the xaxis and yaxis arguments will be
used. Data from other valuators on the device will be ignored.

If the specified device reports absolute positional information, and the server implementation does not
allow such adevice to be used as the X pointer, the request will fail with aBadDevi ce error.

i nt XChangePoi nterDevice(*display, *device, xaxis, yaxis);

display Specifies the connection to the X server.

device Specifies the desired device.

xaxis Specifies the zero-based index of the axis to be used as the x-axis of the
pointer device.

yaxis Specifies the zero-based index of the axis to be used as the y-axis of the
pointer device.

If no error occurs, XChangePoi nt er Devi ce returns Success . A ChangeDevi ceNotify
event with the request field set to NewPoi nt er is sent to all clients selecting that event. A Mappi ng-
Not i f y event with therequest field set to Mappi ngPoi nt er issent toal clients. The requested device
becomes the X pointer, and the old pointer becomes available as an extension input device.

XChangePoi nt er Devi ce cangenerate Al r eadyGr abbed , BadDevi ce , BadMat ch , and
G abFr ozen errors.

Event Synchronization and Core Grabs

Implementation of the input extension requires an extension of the meaning of event synchronization for
the core grab requests. This is necessary in order to allow window managers to freeze all input devices
with asingle request.

Thecoregrabrequestsrequireapointer_modeand keyboard_mode argument. The meaning of these modes
is changed by the input extension. For the XGr abPoi nt er and XG- abBut t on requests, pointer_mode
controls synchronization of the pointer device, and keyboard mode controls the synchronization of all
other input devices. For the XGr abKeyboar d and XGr abKey requests, pointer_mode controls the syn-
chronization of all input devices, except the X keyboard, while keyboard mode controls the synchroniza-
tion of the keyboard. When using one of the core grab requests, the synchronization of extension devices
is controlled by the mode specified for the device not being grabbed.

Extension Active Grabs

Active grabs of extension devices are supported viathe XG abDevi ce function in the same way that
core devices are grabbed using the core XGr abKeyboar d function, except that an extension input device
is passed as afunction parameter. The XUngr abDevi ce function alows a previous active grab for an
extension device to be released.

Passive grabs of buttons and keys on extension devices are supported viathe XG abDevi ceButt on
and XG abDevi ceKey functions. These passive grabs are released viathe XUngr abDevi ceKey
and XUngr abDevi ceBut t on functions.

To grab an extension device, usethe XG abDevi ce function. The device must have previously been
opened using the XOpenDevi ce function.

i nt XG abDevi ce(*di spl ay, *devi ce, grab_w ndow, owner _events,
event _count, *event |ist, t hi s_devi ce_node, ot her _devi ce_node,
time);

Input Extension

"display” Specifies the connection to the X server.

device Specifies the desired device.

grab_window Specifies the ID of awindow associated with the device specified
above.

owner_events Specifies aboolean value of either Tr ue or Fal se .

event_count Specifies the number of elementsin the event_list array.

event_list Specifies a pointer to a list of event classes that indicate which

events the client wishes to receive. These event classes must have
been obtained using the device being grabbed.

this_device_mode Controlsfurther processing of eventsfromthisdevice. Y ou can pass
one of these constants: Gr abMbdeSync or G abMbdeAsync .

other_device_mode Controls further processing of events from all other devices. You
can pass one of these constants: G- abModeSync or Gr abMod-
eAsync .

time Specifies the time. This may be either a timestamp expressed in

millisecondsor Current Ti me .

XGr abDevi ce actively grabs an extension input device and generates Devi ceFocusl n and De-
vi ceFocusQut events. Further input events from this device are reported only to the grabbing client.
This function overrides any previous active grab by this client for this device.

The event_list parameter is a pointer to alist of event classes. This list indicates which events the client
wishes to receive while the grab is active. If owner_eventsis Fal se , input events from this device
are reported with respect to grab_window and are reported only if specified in event_list. If owner_events
isTrue , thenif agenerated event would normally be reported to this client, it is reported normally.
Otherwise, the event is reported with respect to the grab_window and is only reported if specified in
event_list.

The this device_mode argument controls the further processing of events from this device, and the
other_device_mode argument controls the further processing of input events from all other devices.

« If thethis device mode argument is G abMbdeAsync , device event processing continues normal-
ly; if the device is currently frozen by this client, then processing of device events is resumed. If the
this_device_mode argument is G abMbdeSync , the state of the grabbed device (as seen by client
applications) appears to freeze, and no further device events are generated by the server until the grab-
bingclientissuesareleasing XAl | owDevi ceEvent s call or until thedevicegrabisreleased. Actual
device input events are not lost while the device is frozen; they are ssimply queued for later processing.

* If the other_device_ mode is G abMbdeAsync , event processing from other input devices is unaf-
fected by activation of the grab. If other_device modeis G abMbdeSync , the state of al devices
except the grabbed device (as seen by client applications) appears to freeze, and no further events are
generated by the server until the grabbing client issues areleasing XAl | owEvent s or XAl | owDe-
Vi ceEvent s call or until thedevice grab isreleased. Actual eventsare not lost while the other devices
are frozen; they are simply queued for later processing.

XG abDevi ce fails on the following conditions:

« If thedeviceisactively grabbed by some other client, it returns Al r eadyGr abbed .

Input Extension

« If grab_window is not viewable, it returns G- abNot Vi ewabl e .

* |If the specified timeis earlier than the last-grab-time for the specified device or later than the current X
server time, it returns Gr abl nval i dTi me . Otherwise, the last-grab-time for the specified device
is set to the specified time and Cur r ent Ti e isreplaced by the current X server time.

« If the deviceisfrozen by an active grab of another client, it returns Gr abFr ozen .

If agrabbed deviceisclosed by aclient while an active grab by that client isin effect, that active grab will
be released. Any passive grabs established by that client will be released. If the device is frozen only by
an active grab of the requesting client, it is thawed.

XG abDevi ce can generate BadCl ass , BadDevi ce , BadVal ue , and BadW ndowerrors.
Torelease agrab of an extension device, usethe XUngr abDevi ce function.

int XuUngrabDevice(*display, *device, tinme);

display Specifies the connection to the X server.
device Specifies the desired device.
time Specifies the time. This may be either a timestamp expressed in millisec-

onds,or Current Ti ne .

XUngr abDevi ce alowsaclient to rel ease an extension input device and any queued eventsif thisclient
has it grabbed from either XGr abDevi ce or X&G abDevi ceKey . If any other devices are frozen
by the grab, XUngr abDevi ce thaws them. This function does not release the device and any queued
events if the specified time is earlier than the last-device-grab time or is later than the current X server
time. It also generates Devi ceFocusl n and Devi ceFocusQut events. The X server automatically
performsan XUngr abDevi ce if the event window for an active device grab becomes not viewable or
if the client terminates without releasing the grab.

XUngr abDevi ce can generate BadDevi ce errors.
Passively Grabbing a Key
To passively grab asingle key on an extension device, use XGr abDevi ceKey . That device must have

previously been opened using the XQpenDevi ce function, or the request will fail withaBadDevi ce
error. If the specified device does not support input classKeys , therequest will fail withaBadMat ch

error.
i nt XG abDevi ceKey(*di spl ay, *devi ce, keycode, nodi -
fiers, *modi fi er _devi ce, grab_w ndow, owner _events, event _count,

*event _|ist, this_device_node, other_device_node);

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifiesthe keycode of the key that isto be grabbed. Y ou can pass
either the keycode or AnyKey .

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive

OR of these keymask bits: Shi ft Mask , LockMask , Con-
trol Mask , ModlMask , Mod2Mask , Mod3Mask
Mod4Mask , and Mod5Mask .

Input Extension

You can also pass AnyModi fi er , whichisequivaent to issu-
ing the grab key request for all possible modifier combinations (in-
cluding the combination of no modifiers).

modifier_device Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

grab_window Specifies the ID of a window associated with the device specified
above.

owner_events Specifies aboolean value of either Tr ue or Fal se .

event_count Specifies the number of elementsin the event_list array.

event_list Specifies a pointer to a list of event classes that indicate which

events the client wishesto receive.

this_device_mode Controlsfurther processing of eventsfromthisdevice. Y ou can pass
one of these constants: Gr abMbdeSync or G abModeAsync .

other_device_mode Controls further processing of events from all other devices. You
can pass one of these constants: G- abModeSync or Gr abMod-
eAsync .

XGr abDevi ceKey isanalogousto the core XGr abKey function. It creates an explicit passive grab for
akey on an extension device. The XGr abDevi ceKey function establishes a passive grab on a device.
Consequently, in the future,

* |IFthedeviceisnot grabbed and the specified key, which itself can beamodifier key, islogically pressed
when the specified modifier keys logicaly are down on the specified modifier device (and no other
keys are down),

» AND no other modifier keys logically are down,

» AND EITHER the grab window is an ancestor of (or is) the focus window or the grab window is a
descendent of the focus window and contains the pointer,

* AND a passive grab on the same device and key combination does not exist on any ancestor of the
grab window,

» THEN the device is actively grabbed, as for XGr abDevi ce , the last-device-grab time is set to
the time at which the key was pressed (as transmitted in the Devi ceKeyPr ess event), and the De-
Vi ceKeyPr ess event isreported.

The interpretation of the remaining argumentsis as for XGr abDevi ce . Theactive grab isterminated
automatically when thelogical state of the device hasthe specified key released (independent of thelogical
state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical state if
device event processing is frozen.

A modifier of AnyModi f i er isequivalent to issuing the request for all possible modifier combinations
(including the combination of no modifiers). It is not required that all modifiers specified have current-
ly assigned keycodes. A key of AnyKey is equivalent to issuing the request for all possible keycodes.
Otherwise, the key must be in the range specified by min_keycode and max_keycode in the information
returned by the XLi st | nput Devi ces function. If it is not within that range, XGr abDevi ceKey
generates aBadVal ue error.

Input Extension

XGr abDevi ceKey generates a BadAccess error if some other client hasissued a XG abDe-

vi ceKey with the same device and key combination on the same window. When using AnyModi fi er
or AnyKey , therequest fails completely and the X server generatesaBadAccess error, and no grabs
are established if there is a conflicting grab for any combination.

XG abDevi ceKey returns Success upon successful completion of the request.

XG abDevi ceKey can generate BadAccess , BadC ass , BadDevi ce , Badvatch
BadVal ue , and BadW ndowerrors.

To release a passive grab of asingle key on an extension device, use XUngr abDevi ceKey .

i nt XUngr abDevi ceKey(*di spl ay, *devi ce, keycode, nodi fi ers,
*nodi fier_device, ungrab_w ndow);

display Specifies the connection to the X server.

device Specifiesthe desired device.

keycode Specifies the keycode of the key that is to be ungrabbed. Y ou can

pass either the keycode or AnyKey .

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive
OR of these keymask bits: Shi ft Mask , LockMask , Con-
trol Mask , MdlMvask , Mbd2Mask , Mbd3Mask
Mod4Mask , and Mod5Mask .

You can also pass AnyModi fi er , whichisequivaent to issu-
ing the ungrab key request for all possible modifier combinations
(including the combination of no modifiers).

modifier_device Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

ungrab_window Specifies the ID of a window associated with the device specified
above.

XUngr abDevi ceKey isanalogous to the core XUngr abKey function. It releases an explicit passive
grab for akey on an extension input device.

XUngr abDevi ceKey can generate BadAl | oc , BadDevi ce , Badvatch , BadVal ue ,
and BadW ndowerrors.

Passively Grabbing a Button

To establish apassive grab for asingle button on an extension device, use XGr abDevi ceBut t on . The
specified device must have previously been opened using the XOpenDevi ce function, or the request
will fail with aBadDevi ce error. If the specified device does not support input class But t ons , the
request will fail with aBadMat ch error.

i nt XGrabDevi ceButton(*di spl ay, *devi ce, but t on, nodi -
fiers, , grab_w ndow, owner _events, event _count, *event |ist,
thi s_devi ce_npde, other_devi ce_node);

display Specifies the connection to the X server.

device Specifies the desired device.

Input Extension

button

modifiers

modifier_device

grab_window

owner_events
event_count

event_list

this_device_mode

other_device_mode

Specifies the code of the button that is to be grabbed. Y ou can pass
either the button or AnyBut t on .

Specifies the set of keymasks. This mask is the bitwise inclusive
OR of these keymask bits: Shi ft Mask , LockMask , Con-
trol Mask , MdlMask , Mod2Mask , Mbd3Mask
Mbd4Mask , and Mbd5Mask .

YoucanasopassAnyModi fi er , whichisequivalenttoissuing
the grab request for all possible modifier combinations (including
the combination of no modifiers).

Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

Specifies the ID of a window associated with the device specified
above.

Specifies aboolean value of either Tr ue or Fal se .
Specifies the number of elementsin the event_list array.

Specifies alist of event classes that indicates which device events
are to be reported to the client.

Controlsfurther processing of eventsfromthisdevice. Y ou can pass
one of these constants: Gr abMbdeSync or G abModeAsync .

Controls further processing of events from all other devices. You
can pass one of these constants: G- abModeSync or Gr abMod-
eAsync .

XG abDevi ceBut t on isanalogousto the core XGr abBut t on function. It creates an explicit passive
grab for a button on an extension input device. Because the server does not track extension devices, no
cursor is specified with this request. For the same reason, there is no confine_to parameter. The device
must have previously been opened using the XOpenDevi ce function.

The XG abDevi ceBut t on function establishesapassive grab on adevice. Conseguently, inthefuture,

« |F the device is not grabbed and the specified button is logically pressed when the specified modifier
keys logically are down (and no other buttons or modifier keys are down),

* AND EITHER the grab window is an ancestor of (or is) the focus window OR the grab window is a
descendent of the focus window and contains the pointer,

» AND apassive grab on the same device and button/key combination does not exist on any ancestor of

the grab window,

* THEN the deviceis actively grabbed, asfor XGr abDevi ce , thelast-grab timeis set to the time at
which the button was pressed (astransmitted inthe Devi ceBut t onPr ess event), and theDevi ce-

But t onPr ess event isreported.

The interpretation of the remaining argumentsis as for XGr abDevi ce . The active grab isterminated
automatically when logical state of the device has all buttons released (independent of the logical state

of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical state if

device event processing is frozen.

10

Input Extension

A modifier of AnyModi f i er isequivalent to issuing the request for all possible modifier combinations
(including the combination of no modifiers). It is not required that all modifiers specified have currently
assigned keycodes. A button of AnyBut t on is equivalent to issuing the request for all possible buttons.
Otherwise, it is not required that the specified button be assigned to a physical button.

XG abDevi ceBut t on generates a BadAccess error if some other client hasissued a XG ab-
Devi ceBut t on with the same device and button combination on the same window. When using Any -
Modi fi er or AnyButton , therequest fails completely and the X server generates a BadAccess
error and no grabs are established if there is a conflicting grab for any combination.

XGr abDevi ceBut t on cangenerateBadAccess , Badd ass , BadDevi ce , BadMat ch ,
BadVal ue , and BadW ndowerrors.

To release a passive grab of a button on an extension device, use XUngr abDevi ceButt on .

i nt XUngr abDevi ceButton(*di spl ay, *devi ce, but t on, nodi fi ers,
*nodi fier_device, ungrab_w ndow);

display Specifies the connection to the X server.
device Specifiesthe desired device.
button Specifies the code of the button that is to be ungrabbed. You can

pass either a button or AnyButt on .

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive
OR of these keymask bits: Shi ft Mask , LockMask , Con-
trol Mask , MdlMvask , Mbd2Mask , Mbd3Mask
Mod4Mask , and Mod5Mask .

You can also pass AnyModi fi er , whichisequivaent to issu-
ing the ungrab key request for all possible modifier combinations
(including the combination of no modifiers).

modifier_device Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

ungrab_window Specifies the ID of awindow associated with the device specified
above.

XUngr abDevi ceBut t on isanalogousto the core XUngr abBut t on function. It releases an explicit
passive grab for a button on an extension device. That device must have previously been opened using the
XOpenDevi ce function, or aBadDevi ce error will result.

A modifier of AnyModi f i er isequivaent to issuing the request for all possible modifier combinations
(including the combination of no modifiers).

XUngr abDevi ceBut t on cangenerateBadAl | oc , BadDevi ce , Badvat ch , BadVal ue ,
and BadW ndowerrors.

Thawing a Device
To alow further eventsto be processed when adevice has been frozen, use XAl | owDevi ceEvent s .
int XAlIlowbeviceEvents(*display, *device, event_node, tine);

display Specifies the connection to the X server.

11

Input Extension

device Specifies the desired device.

event_mode Specifies the event mode. You can pass one of these constants:

AsyncThi sDevi ce , SyncThi sDevi ce , AsyncQt her De-
vi ces , Repl ayThi sDevice , AsyncAl |l , orSyncAll

time Specifies the time. This may be either a timestamp expressed in mil-

liseconds, or Current Ti ne .

XAl | owDevi ceEvent s releases some queued events if the client has caused a device to freeze. It
has no effect if the specified time is earlier than the last-grab time of the most recent active grab for the
client and device, or if the specified time is later than the current X server time. The following describes
the processing that occurs depending on what constant you pass to the event_mode argument:

AsyncThi sDevi ce

If the specified device is frozen by the client, event processing for that continues as usual. If the device
isfrozen multiple times by the client on behalf of multiple separate grabs, AsyncThi sDevi ce thaws
for al. AsyncThi sDevi ce has no effect if the specified device is not frozen by the client, but the
device need not be grabbed by the client.

SyncThi sDevi ce

If the specified device is frozen and actively grabbed by the client, event processing for that device
continues normally until the next key or button event isreported to the client. At thistime, the specified
device again appearsto freeze. However, if the reported event causes the grab to be rel eased, the spec-
ified device does not freeze. SyncThi sDevi ce has no effect if the specified device is not frozen by
the client or is not grabbed by the client.

Repl ayThi sDevi ce

If the specified device is actively grabbed by the client and is frozen as the result of an event having
been sent to the client (either from the activation of a Gr abDevi ceBut t on or from a previous Al -
| owDevi ceEvent s withmodeSyncThi sDevi ce , butnotfromaGrab), thegrabisreleased
and that event is completely reprocessed. This time, however, the request ignores any passive grabs at
or above (toward the root) the grab-window of the grab just released. The request has no effect if the
specified device is not grabbed by the client or if it is not frozen as the result of an event.

AsyncQt her Devi ces

If theremaining devicesarefrozen by the client, event processing for them continuesasusual . If the other
devices are frozen multiple times by the client on behalf of multiple separate grabs, AsyncQt her De-
vi ces “‘thaws' for al. AsyncQt her Devi ces has no effect if the devices are not frozen by the
client, but those devices need not be grabbed by the client.

SyncAl |

If all devices are frozen by the client, event processing (for all devices) continues normally until the
next button or key event is reported to the client for a grabbed device, at which time the devices again
appear to freeze. However, if the reported event causes the grab to be released, then the devices do not
freeze (but if any device is still grabbed, then a subsequent event for it will still cause all devices to
freeze). SyncAl | hasno effect unlessall devices are frozen by the client. If any deviceisfrozen twice
by the client on behalf of two separate grabs, SyncAl | "thaws® for both (but a subsequent freeze for
SyncAl | will freeze each device only once).

AsyncAl |

12

Input Extension

« If al devicesarefrozen by theclient, event processing (for al devices) continuesnormally. If any device
is frozen multiple times by the client on behalf of multiple separate grabs, AsyncAl | ““thaws "for all.
If any deviceisfrozen twice by the client on behalf of two separate grabs, AsyncAl | ““thaws' for both.
AsyncAl | hasno effect unless all devices are frozen by the client.

AsyncThi sDevi ce , SyncThi sDevice , and Repl ayThi sDevi ce have no effect on the
processing of eventsfrom theremaining devices. AsyncQ her Devi ces hasno effect on the processing
of events from the specified device. When the event_mode is SyncAl | or AsyncAl | , the device
parameter isignored.

It is possible for several grabs of different devices (by the same or different clients) to be active smulta-
neously. If adeviceisfrozen on behalf of any grab, no event processing is performed for the device. Itis
possible for a single device to be frozen because of several grabs. In this case, the freeze must be released
on behalf of each grab before events can again be processed.

XAlI'l owDevi ceEvent s can generate BadDevi ce and BadVal ue errors.

Controlling Device Focus

The current focus window for an extension input device can be determined using the XCGet Devi ce-
Focus function. Extension devices are focused using the XSet Devi ceFocus function in the same
way that the keyboard is focused using the core XSet | nput Focus function, except that a device ID
is passed as a function parameter. One additional focus state, Fol | owKeyboar d , isprovided for ex-
tension devices.

To get the current focus state, revert state, and focus time of an extension device, use XGet Devi ceFo-
cus .

i nt XGet Devi ceFocus(*di spl ay, *devi ce, *focus_return,
*revert _to_return, *focus_time_return);

display Specifies the connection to the X server.
device Specifies the desired device.
focus _return Specifies the address of a variable into which the server can return

the ID of the window that contains the device focus or one of the
constantsNone , Poi nt er Root , or Fol | owKeyboard .

revert to_return Specifies the address of a variable into which the server can return
the current revert_to status for the device.

focus time return Specifies the address of a variable into which the server can return
the focustime last set for the device.

XGet Devi ceFocus returnsthe focus state, the revert-to state, and the last-focus-time for an extension
input device.

XGet Devi ceFocus can generate BadDevi ce and BadMat ch errors.

To set the focus of an extension device, use XSet Devi ceFocus .

int XSetDeviceFocus(*display, *device, focus, revert_to, tine);
display Specifies the connection to the X server.

device Specifies the desired device.

13

Input Extension

focus Specifies the ID of the window to which the device's focus should be
set. This may be awindow ID, or Poi nt er Root , Fol | owKey-
board , orNone .

revert_to Specifies to which window the focus of the device should revert if the
focus window becomes not viewable. One of the following constants
may be passed: Revert ToPar ent , Revert ToPoi nt er Root
Revert ToNone , or Revert ToFol | owKeyboard .

time Specifies the time. Y ou can pass either a timestamp, expressed in mil-
liseconds, or Current Ti me .

XSet Devi ceFocus changes the focus for an extension input device and the last-focus-change-time.
It has no effect if the specified timeis earlier than the last-focus-change-time or is later than the current X
server time. Otherwise, the last-focus-change-time is set to the specified time. This function causes the X
server to generate Devi ceFocusl n and Devi ceFocusQut events.

The action taken by the server when thisfunction is requested depends on the value of the focus argument:

* If the focus argument isNone , all input events from this device will be discarded until a new focus
window is set. In this case, the revert_to argument is ignored.

* If thefocus argument isawindow ID, it becomesthe focus window of the device. If an input event from
the device would normally be reported to this window or to one of its inferiors, the event is reported
normally. Otherwise, the event is reported relative to the focus window.

* IfthefocusargumentisPoi nt er Root , thefocuswindow isdynamically takento betheroot window
of whatever screen the pointer is on at each input event. In this case, the revert_to argument is ignored.

« If thefocusargumentisFol | owKeyboard , thefocuswindow isdynamically taken to bethe same
as the focus of the X keyboard at each input event.

The specified focus window must be viewable at the time XSet Devi ceFocus is called. Otherwise,
it generates a BadMat ch error. If the focus window later becomes not viewable, the X server evaluates
the revert_to argument to determine the new focus window.

 If therevert_toargumentisRevert ToPar ent , thefocusrevertsto the parent (or the closest view-
able ancestor), and the new revert_to valueistaken to be Revert ToNone .

o If the revert_to argument is Revert ToPoi nt er Root , Revert ToFol | owKeyboard , or
Revert ToNone , thefocusrevertsto that value.

When the focus reverts, the X server generates Devi ceFocusl n and Devi ceFocusQut events, but
the last-focus-change time is not affected.

XSet Devi ceFocus can generate BadDevi ce , BadMat ch , BadVal ue , and BadW ndow
errors.

Controlling Device Feedback

To determine the current feedback settings of an extension input device, use XGet FeedbackCon-
trol

XFeedbackSt at e * XGet FeedbackCont r ol (*di spl ay, *devi ce,
*num f eedbacks_return);

display Specifies the connection to the X server.

14

Input Extension

device Specifies the desired device.

num_feedbacks return Returns the number of feedbacks supported by the device.

XCGet FeedbackCont r ol returnsalist of FeedbackSt at e structures that describe the feedbacks
supported by the specified device. There is an XFeedbackSt at e structure for each class of feedback.
These are of variable length, but the first three members are common to all.

typedef struct {

}

Xl D cl ass;
int length;
XIDid;

XFeedbackSt at e;

The common members are as follows:

The class member identifies the class of feedback. It may be compared to constants defined in the file
< X11/extensions/ Xl .h >. Currently defined feedback constants include: KbdFeedback-
Class , PtrFeedbackd ass , StringFeedbackd ass , | nt eger Feedbackd ass ,
LedFeedbackC ass , andBel | Feedbackd ass .

The length member specifies the length of the Feedback St at e structure and can be used by clients
to traversethe list.

The id member uniquely identifies a feedback for a given device and class. This alows a device to
support more than one feedback of the same class. Other feedbacks of other classes or devices may
have the same ID.

Those feedbacks equivalent to those supported by the core keyboard are reported in classKbdFeedback
using the XKbdFeedbackSt at e structure, which is defined as follows:

typedef struct {

}

XI D cl ass;

int length;

XIDid;

int click;

nt percent;

nt pitch;

nt duration;

nt | ed _mask;

nt gl obal _auto_repeat;
char auto_repeats[32];

XKbdFeedbackSt at e;

The additional members of the XKbdFeedbackSt at e structure report the current state of the feedback:

The click member specifies the key-click volume and has a value in the range O (off) to 100 (loud).
The percent member specifies the bell volume and has a value in the range 0 (off) to 100 (loud).

The pitch member specifiesthe bell pitch in Hz. The range of the value is implementati on-dependent.

15

Input Extension

 The duration member specifies the duration in milliseconds of the bell.

e Theled mask member is abit mask that describes the current state of up to 32 LEDs. A value of 1in
abit indicates that the corresponding LED ison.

e Thegloba auto_repeat member hasavalue of Aut oRepeat ModeOn or Aut oRepeat ModeOr f

e The auto_repeats member is a bit vector. Each bit set to 1 indicates that auto-repeat is enabled for the
corresponding key. The vector isrepresented as 32 bytes. Byte N (from 0) contains the bits for keys 8N
to 8N + 7, with the |least significant bit in the byte representing key 8N.

Those feedbacks equivalent to those supported by the core pointer are reported in class Pt r Feedback
using the XPt r FeedbackSt at e structure, which is defined as follows:

typedef struct {

Xl D cl ass;
int |ength;
XIDid;

int accel Num

i nt accel Denom

int threshold;
} XPtrFeedbackSt at e;

The additional members of the XPt r Feedback St at e structure report the current state of the feedback:
e The accelNum member returns the numerator for the acceleration multiplier.

» The accel Denom member returns the denominator for the acceleration multiplier.

* The accel Denom member returns the threshold for the acceleration.

Integer feedbacks are those capable of displaying integer numbers and reported viathe XI nt eger Feed-
backSt at e structure. The minimum and maximum values that they can display are reported.

typedef struct {
XI D cl ass;
int |ength;
XIDid;
int resolution;
int mnVal;
i nt maxVal ;
} Xl nteger FeedbackSt at e;

The additional membersof the Xl nt eger FeedbackSt at e structure report the capabilities of thefeed-
back:

 Theresolution member specifies the number of digits that the feedback can display.
e TheminVal member specifies the minimum value that the feedback can display.

e ThemaxVal specifies the maximum value that the feedback can display.

16

Input Extension

String feedbacks arethosethat can display character information and arereported viathe XSt r i ngFeed-

backsSt at e structure. Clients set these feedbacks by passing a list of KeySyns to be displayed. The
XGet FeedbackCont r ol function returnsthe set of key symbols that the feedback can display, aswell
as the maximum number of symbols that can be displayed. The XSt ri ngFeedbackSt at e structure
is defined as follows:

t ypedef struct {

Xl D cl ass;
int length;
XIDid;

i nt max_synbol s;

int numsyns_supported;

KeySym *syms_support ed;
} XStringFeedbackSt at e;

The additional members of the XSt r i ngFeedbackSt at e structure report the capabilities of the feed-
back:

» The max_symbols member specifies the maximum number of symbols that can be displayed.
» The syms_supported member is a pointer to the list of supported symbols.
» Thenum_syms supported member specifies the length of the list of supported symbols.

Bell feedbacks are those that can generate a sound and are reported via the XBel | FeedbackSt at e
structure. Some implementations may support a bell as part of a KbdFeedback feedback. Class
Bel | Feedback isprovided for implementations that do not choose to do so and for devicesthat support
multiple feedbacks that can produce sound. The meaning of the membersis the same as that of the corre-
sponding fields in the XKbdFeedback St at e structure.

typedef struct {
XI D cl ass;
int length;
XIDid;
i nt percent;
int pitch;
int duration;
} XBel | FeedbackSt at e;

L ed feedbacks are those that can generate alight and are reported viathe XLedFeedback St at e struc-
ture. Up to 32 lights per feedback are supported. Each bit in led_mask corresponds to one supported light,
and the corresponding bit in led_values indicates whether that light is currently on (1) or off (0). Some
implementations may support leds as part of a KbdFeedback feedback. Class LedFeedback is pro-
vided for implementations that do not choose to do so and for devices that support multiple led feedbacks.

typedef struct {

17

Input Extension

Xl D cl ass;
int |ength;
XIDid;

Mask | ed_val ues;
Mask | ed_nask;
} XLedFeedbacksSt at e;
XGet FeedbackCont r ol can generate BadDevi ce and BadMat ch errors.

To free theinformation returned by the XGet FeedbackCont r ol function, use XFr eeFeedback-
Li st

void XFreeFeedbackList(*list);

list Specifies the pointer to the XFeedbackSt at e structure returned by a previ-
ous call to XGet FeedbackCont r ol

XFr eeFeedbackLi st freesthelist of feedback control information.

To change the settings of afeedback on an extension device, use XChangeFeedbackControl . This
function modifies the current control values of the specified feedback using information passed in the
appropriate XFeedbackCont r ol structure for the feedback. Which values are modified depends on the
valuemask passed.

i nt XChangeFeedbackControl (*display, *device, valuemask, *value);

display Specifies the connection to the X server.
device Specifies the desired device.
valuemask Specifiesonevaluefor each bit inthe mask (least to most significant bit).

The values are associated with the feedbacks for the specified device.
value Specifies apointer to the XFeedbackCont r ol structure.

XChangeFeedbackCont r ol controlsthe device characteristics described by the XFeedback Con-
t rol structure. There is an XFeedbackCont r ol structure for each class of feedback. These are of
variable length, but the first three members are common to all and are as follows:

typedef struct {

Xl D cl ass;
int length;
XIDid;

} XFeedbackControl ;

Feedback class KbdFeedback controls feedbacks equivalent to those provided by the core keyboard
using the KbdFeedbackCont r ol structure, which is defined as follows..

typedef struct {
XI D cl ass;

18

Input Extension

int |ength;
XIDid;

int click;

nt percent;

nt pitch;

nt duration;

nt | ed_mask;

nt | ed_val ue;

nt key;

nt auto_repeat node;
} XKbdFeedbackControl ;

Thisclasscontrolsthe device characteristicsdescribed by the XKbdFeedback Cont r ol structure. These
include the key click_percent, global_auto_repeat, and individual key auto-repeat. Valid modes are Au-
t oRepeat ModeOn , Aut oRepeat ModeOF f , and Aut oRepeat ModeDef aul t

Valid masks are as follows:

#def i ne DvKeyd i ckPer cent (1><<0)
#def i ne DvPer cent (1><<0)
#def i ne DvPi tch (1><<0)
#def i ne DvDur ati on (1><<0)
#def i ne DvLed (1><<0)
#def i ne DvLedMode (1><<0)
#def i ne DvKey (1><<0)
#def i ne DvAut oRepeat Mode (1><<0)

Feedback class Pt r Feedback controls feedbacks equivalent to those provided by the core pointer using
the Pt r FeedbackCont r ol structure, which is defined as follows:

typedef struct {

Xl D cl ass;
int length;
XIDid;

i nt accel Num
i nt accel Denom
int threshold;

} XPtrFeedbackControl ;

Which values are modified depends on the valuemask passed.

Valid masks are as follows:

#def i ne DvAccel num (1L<<0)
#def i ne DvAccel Denom (1L<<1)
#def i ne DvThreshol d (1L<<2)

The acceleration, expressed as afraction, isamultiplier for movement. For example, specifying 3/1 means
that the device moves three times as fast as normal. The fraction may be rounded arbitrarily by the X
server. Acceleration takes effect only if the device moves more than threshold pixels at once and applies

19

Input Extension

only to the amount beyond the value in the threshold argument. Setting a value to -1 restores the default.
The values of the accel Numerator and threshold fields must be nonzero for the pointer values to be set.
Otherwise, the parameters will be unchanged. Negative values generate aBadVal ue error, asdoesazero
value for the accel Denominator field.

This request fails with a BadMat ch error if the specified device is not currently reporting relative mo-
tion. If adevicethat is capable of reporting both relative and absolute motion has its mode changed from
Rel ati ve to Absol ut e by an XSet Devi ceMode request, valuator control values will be ignored
by the server while the device isin that mode.

Feedback class | nt eger Feedback controls integer feedbacks displayed on input devices and are re-
ported viathe | nt eger FeedbackCont r ol structure, which is defined as follows:

typedef struct {

XI D cl ass;
int length;
XIDid;

int int_to _display;
} Xl nteger FeedbackControl ;

Valid masks are as follows:

#def i ne Dvl nt eger (1L<<0)

Feedback class St ri ngFeedback controls string feedbacks displayed on input devices and reported via
the St ri ngFeedbackCont r ol structure, which is defined as follows:

typedef struct {

Xl D cl ass;
int length;
XIDid;

i nt num keysyns;
KeySym *syns_t o_di spl ay;
} XStringFeedbackControl;

Valid masks are as follows:

#defi ne DvString (1L<<0)

Feedback class Bel | Feedback controls abell on an input device and is reported viathe Bel | Feed-
backControl structure, which is defined asfollows:

typedef struct {

20

Input Extension

XI'D cl ass;
int |ength;
XIDid;
i nt percent;
int pitch;
int duration;
} XBel | FeedbackControl ;

Valid masks are as follows:

#defi ne DvPer cent (1L<<1)
#defi ne DvPi tch (1L<<2)
#defi ne DvDurati on (1L<<3)

Feedback class LedFeedback controls lights on an input device and are reported via the LedFeed-
backCont r ol structure, which is defined as follows:

t ypedef struct {
XI D cl ass;
int length;
XIDid;
int |ed_mask;
i nt |1ed_val ues;
} XLedFeedbackControl ;

Valid masks are as follows:

#def i ne DvLed (1L<<4)
#def i ne DvLedMode (1L<<5)

XChangeFeedbackCont r ol can generate BadDevi ce , BadFeedBack , BadMatch , and
BadVal ue errors.

Ringing a Bell on an Input Device
Toring abell on an extension input device, use XDevi ceBel |

int XDeviceBell(*display, *device, feedbackid, percent);

display Specifies the connection to the X server.

device Specifies the desired device.

feedbackclass Specifies the feedbackclass. Valid values are KbdFeedback-
Cl ass and Bel | Feedbackd ass .

feedbackid Specifiesthe ID of the feedback that has the bell.

percent Specifiesthe volumein therange-100 (quiet) to 100 percent (loud).

21

Input Extension

XDevi ceBel | isanaogous to the core XBel | function. It rings the specified bell on the specified
input device feedback, using the specified volume. The specified volumeisrelative to the base volume for
the feedback. If the value for the percent argument is not in the range -100 to 100 inclusive, aBadVal ue
error results. The volume at which the bell rings when the percent argument is nonnegative is:

base - [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negativeis:

base + [(base * percent) / 100]
To change the base volume of the bell, use XChangeFeedbackCont r ol

XDevi ceBel | can generate BadDevi ce and BadVal ue errors.

Controlling Device Encoding

To get the key mapping of an extension device that supports input class Keys , use XGet De-
vi ceKeyMappi ng .

KeySym * XGet Devi ceKeyMappi ng(*di spl ay, *devi ce,
first_keycode wanted, keycode count, *keysyns_per_keycode return);
display Specifies the connection to the X server.

device Specifies the desired device.

first_keycode wanted Specifiesthe first keycode that isto be returned.

keycode_count Specifies the number of keycodes that are to be returned.
keysyms per_keycode return Returns the number of keysyms per keycode.

XGet Devi ceKeyMappi ng is analogous to the core XGet Keyboar dMappi ng function. It returns
the symbols for the specified number of keycodes for the specified extension device.

XCet Devi ceKeyMappi ng returnsthe symbolsfor the specified number of keycodesfor the specified
extension device, starting with the specified keycode. The first_keycode wanted must be greater than
or equa to min-keycode as returned by the XLi st | nput Devi ces request (else aBadVal ue error
results). The following value:

first_keycode wanted + keycode count - 1

must be less than or equal to max-keycode as returned by the XLi st | nput Devi ces request (elsea
BadVal ue error results).

The number of elementsin the keysymslist isas follows:

keycode_count * keysyns_per _keycode_return

And KEYSYM number N (counting from zero) for keycode K has an index (counting from zero), in
keysyms, of the following:

22

Input Extension

(K- first_keycode_wanted) * keysyns_per_keycode_ return + N

The keysyms _per_keycode return value is chosen arbitrarily by the server to be large enough to report
all requested symbols. A special KEYSYM value of NoSynbol isused to fill in unused elements for
individual keycodes.

To free the data returned by this function, use XFr ee.

If the specified device has not first been opened by this client via XOpenDevi ce , this request will
fail with aBadDevi ce error. If that device does not support input class Keys , thisrequest will fail
with aBadMat ch error.

XGet Devi ceKeyMappi ng can generate BadDevi ce , BadMvat ch , and BadVal ue erors.

To change the keyboard mapping of an extension device that supports input class Keys , use
XChangeDevi ceKeyMappi ng .

i nt XChangeDevi ceKeyMappi ng(*di spl ay, *devi ce, first_keycode,
keysyns_per _keycode, *keysyns, num codes);

display Specifies the connection to the X server.

device Specifies the desired device.

first_keycode Specifies the first keycode that is to be changed.
keysyms per_keycode Specifies the keysyms that are to be used.

keysyms Specifies apointer to an array of keysyms.

num_codes Specifies the number of keycodes that are to be changed.

XChangeDevi ceKeyMappi ng isanalogousto the core XChangeKeyboar dMappi ng function. It
defines the symbols for the specified number of keycodes for the specified extension keyboard device.

If the specified device has not first been opened by this client via XOpenDevi ce , this request will
fail with aBadDevi ce error. If the specified device does not support input class Keys , this request
will fail with aBadMat ch error.

The number of elements in the keysyms list must be a multiple of keysyms per_keycode. Otherwise,
XChangeDevi ceKeyMappi ng generates a BadLengt h error. The specified first_keycode must be
greater than or equal to the min_keycode value returned by the Li st | nput Devi ces request, or this
request will fail with a BadVal ue error. In addition, if the following expression is not less than the
max_keycode value returned by the Li st | nput Devi ces request, the request will fail with a Bad-
Val ue error:

first_keycode + (numcodes / keysyms_per_keycode) - 1

XChangeDevi ceKeyMappi ng can generate BadAl | oc , BadDevi ce , BadMatch , and
BadVal ue errors.

To obtain the keycodes that are used as modifiers on an extension device that supportsinput classKeys
use XGet Devi ceMbdi fi er Mappi ng .

XModi fi erKeymap * XGet Devi ceModi fi er Mappi ng(*di splay, *device);

display Specifies the connection to the X server.

23

Input Extension

device Specifies the desired device.

XGet Devi ceModi fi er Mappi ng isanalogoustothecore XGet Modi f i er Mappi ng function. The
XGet Devi ceModi fi er Mappi ng function returns a newly created XMbdi fi er Keynap structure
that contains the keys being used as modifiers for the specified device. The structure should be freed
after use with XFr eeModi f i er Mappi ng . If only zero values appear in the set for any modifier, that
modifier is disabled.

XCGet Devi ceModi f i er Mappi ng can generate BadDevi ce and BadMVat ch errors.

To set which keycodes are to be used as modifiers for an extension device, use XSet Devi ceModi -
fierMapping .

i nt XSetDeviceMdifierMpping(*display, *device, *nodnap);

display Specifies the connection to the X server.
device Specifies the desired device.
modmap Specifies apointer to the XMbdi f i er Keymap structure.

XSet Devi ceModi fi er Mappi ng isanalogousto the core XSet Modi f i er Mappi ng function. The

XSet Devi ceModi fi er Mappi ng function specifies the keycodes of the keys, if any, that are to be
used as modifiers. A zero value means that no key should be used. No two arguments can have the same
nonzero keycode value. Otherwise, XSet Devi ceMbdi fi er Mappi ng generatesaBadVal ue error.
There are eight modifiers, and the modifiermap member of the XModi f i er Keymap structure contains
eight sets of max_keypermod keycodes, one for each modifier in the order Shi ft , Lock , Con-

trol , Modl , Mod2 , Mbd3 , Mbd4 , and Mod5 . Only nonzero keycodes have meaning
in each set, and zero keycodes are ignored. In addition, all of the nonzero keycodes must be in the range
specified by min_keycode and max_keycode reported by the XLi st | nput Devi ces function. Oth-
erwise, XSet Modi fi er Mappi ng generates aBadVal ue error. No keycode may appear twice in the
entire map. Otherwise, it generates aBadVal ue error.

A X server can impose restrictions on how modifiers can be changed, for example, if certain keys do not
generate up transitionsin hardware or if multiple modifier keys are not supported. If some such restriction
is violated, the status reply is Mappi ngFai | ed , and none of the modifiers are changed. If the new
keycodes specified for a modifier differ from those currently defined and any (current or new) keys for
that modifier are in the logically down state, the status reply is Mappi ngBusy , and none of the
modifiers are changed. XSet Modi f i er Mappi ng generates a Devi ceMappi ngNoti fy event on a
Mappi ngSuccess status.

XSet Devi ceModi fi er Mappi ng can generate BadAl | oc , BadDevi ce , BadMvatch , and
BadVal ue errors.

Controlling Button Mapping
To set the mapping of the buttons on an extension device, use XSet Devi ceBut t onMappi ng .

int XSetDeviceButtonMappi ng(*di splay, *device, map[], nnap);

display Specifies the connection to the X server.

device Specifies the desired device.

map Specifies the mapping list.

nmap Specifies the number of itemsin the mapping list.

24

Input Extension

XSet Devi ceBut t onMappi ng setsthe mapping of the buttons on an extension device. If it succeeds,
the X server generates a Devi ceMappi ngNot i fy event,and XSet Devi ceBut t onMappi ng re-
turns Mappi ngSuccess . Elements of the list are indexed starting from one. The length of the list
must bethesameas XGet Devi ceBut t onMappi ng would return, or aBadVal ue error results. The
index is abutton number, and the element of the list defines the effective number. A zero element disables
a button, and elements are not restricted in value by the number of physical buttons. However, no two
elements can have the same nonzero value, or aBadVal ue error results. If any of the buttonsto be altered
are logicaly in the down state, XSet Devi ceBut t onMappi ng returns Mappi ngBusy , and the
mapping is not changed.

XSet Devi ceBut t onMappi ng can generate BadDevi ce , BadMat ch , and BadVal ue errors.
To get the button mapping, use XGet Devi ceBut t onMappi ng .

i nt XGet Devi ceButt onMappi ng(*di splay, *device, map_return[], nmap);

display Specifies the connection to the X server.

device Specifies the desired device.

map_return Specifies the mapping list.

nmap Specifies the number of itemsin the mapping list.

XCet Devi ceBut t onMappi ng returns the current mapping of the specified extension device. Ele-
ments of the list are indexed starting from one. XGet Devi ceBut t onMappi ng returns the number
of physical buttons actually on the pointer. The nominal mapping for the buttons is the identity mapping:
map[i]=i. The nmap argument specifies the length of the array where the button mapping is returned, and
only the first nmap elements are returned in map_return.

XCet Devi ceBut t onMappi ng can generate BadDevi ce and BadMat ch errors.

Obtaining the State of a Device

To obtain information that describes the state of the keys, buttons, and valuators of an extension device,
use XQuer yDevi ceState .

XDevi ceState * XQueryDevi ceState(*display, *device);
display Specifies the connection to the X server.
device Specifies the desired device.

XQuer yDevi ceSt at e returns a pointer to an XDevi ceSt at e structure, which points to a list of
structures that describe the state of the keys, buttons, and valuators on the device:

typedef struct {
Xl D devi ce_i d;
i nt num cl asses;
Xl nput Cl ass *dat a;
} XDevi ceSt at e;

The structures are of variable length, but the first two members are common to all and are as follows:

25

Input Extension

typedef struct {
unsi gned char cl ass;
unsi gned char |ength;
} Xl nput d ass;

The class member containsaclassidentifier. Thisidentifier can be compared with constants defined in the
file< X11/ ext ensi ons/ Xl . h >. Currently defined constantsare: KeyCl ass , Buttond ass ,
and Val uat or d ass .

The length member contains the length of the structure and can be used by clientsto traverse thelist.

The XVal uat or St at e structure describes the current state of the valuators on the device. The
num_valuators member contains the number of valuators on the device. The mode member is a mask
whose bitsreport the data mode and other state information for the device. The following bits are currently
defined:

Devi ceMode 1<<0 Rel ative = 0, Absolute =1
ProximtyState 1 <1 InProximty =0, QuOProximty =1

The valuators member contains a pointer to an array of integers that describe the current value of the
valuators. If themodeisRel ati ve , thesevaues are undefined.

typedef struct {
unsi gned char cl ass;
unsi gned char |ength;
unsi gned char num val uat ors;
unsi gned char node;
int *val uators;
} Xval uator State

The XKey St at e structure describes the current state of the keys on the device. Byte N (from 0) contains
the bitsfor key 8N to 8N + 7 with the least significant bit in the byte representing key 8N.

typedef struct {
unsi gned char cl ass;
unsi gned char |ength;
short num keys;
char keys[32];

} XKeySt at e;

The XBut t onSt at e structure describes the current state of the buttons on the device. Byte N (from 0)
contains the bits for button 8N to 8N + 7 with the least significant bit in the byte representing button 8N.

26

Input Extension

typedef struct {
unsi gned char cl ass;
unsi gned char |ength;
short num buttons;
char buttons[32];

} XButtonStat e;

XQuer yDevi ceSt at e can generate BadDevi ce errors.
To free the data returned by this function, use XFr eeDevi ceSt at e .
void XFreeDeviceState(*state);

state Specifiesthe pointer to the XDevi ceSt at e datareturned by aprevious call
to XQuer yDevi ceState .

XFr eeDevi ceSt at e frees the device state data.

Events

Theinput extension creates input events anal ogous to the core input events. These extension input events
are generated by manipulating one of the extension input devices. The remainder of this section discusses
the following X Input Extension event topics:

* Event types
» Event classes

e Event structures

Event Types

Event types are integer numbers that a client can use to determine what kind of event it hasreceived. The
client compares the type field of the event structure with known event types to make this determination.

The core input event types are constants and are defined in the header file< X11/ X. h >. Extension
event types are not constants. Instead, they are dynamically allocated by the extension's request to the X
server when the extension is initialized. Because of this, extension event types must be obtained by the
client from the server.

The client program determines the event type for an extension event by using the information returned
by the XOpenDevi ce request. Thistype can then be used for comparison with the type field of events
received by the client.

Extension events propagate up the window hierarchy in the same manner as core events. If awindow is
not interested in an extension event, it usually propagates to the closest ancestor that is interested, unless
the dont_propagate list prohibitsit. Grabs of extension devices may alter the set of windows that receive
aparticular extension event.

The following table lists the event category and its associated event type or types.

Event Category Event Type

Device key Devi ceKeyPr ess

27

Input Extension

Event Category Event Type

Devi ceKeyRel ease

Device motion Devi ceBut t onPr ess

Devi ceBut t onRel ease
Devi ceMoti onNoti fy

Deviceinput focus Devi ceFocusl n
Devi ceFocusCut
Device state notification Devi ceSt at eNoti fy
Device proximity Proximtyln
Proxi m t yQut
Device mapping Devi ceMappi ngNot i fy
Device change ChangeDevi ceNoti fy

Event Classes

Event classes are integer numbers that are used in the same way as the core event masks. They are used
by a client program to indicate to the server which events that client program wishesto receive.

The core input event masks are constants and are defined in the header file< X11/ X. h >. Extension
event classes are not constants. Instead, they are dynamically allocated by the extension's request to the
X server when the extension is initialized. Because of this, extension event classes must be obtained by
the client from the server.

The event classfor an extension event and device is obtained from information returned by the XOpen-
Devi ce function. Thisclasscanthen beused inan XSel ect Ext ensi onEvent request to ask that
events of that type from that device be sent to the client program.

For Devi ceBut t onPr ess events, the client may specify whether or not animplicit passive grab should
be done when the button is pressed. If the client wants to guarantee that it will receive a Devi ceBut -
t onRel ease event for each Devi ceBut t onPr ess event it receives, it should specify the Devi ce-
But t onPr essGr ab classin addition to the Devi ceBut t onPr ess class. Thisrestricts the client in
that only one client at atime may request Devi ceBut t onPr ess events from the same device and win-
dow if any client specifies this class.

If any client has specified the Devi ceBut t onPr essGr ab class, any requests by any other client that
specify the same device and window and specify either Devi ceBut t onPr ess or Devi ceBut t on-
Pr essGr ab will cause an Access error to be generated.

If only the Devi ceBut t onPr ess classis specified, no implicit passive grab will be done when a but-
ton is pressed on the device. Multiple clients may use this class to specify the same device and window
combination.

Theclient may also select Devi ceMot i on events only when abutton isdown. It does this by specifying
the event classes Devi ceBut t on1Mot i on through Devi ceButt on5Mbti on . Aninput device
will support only as many button motion classes asit has buttons.

Event Structures

Each extension event type has a corresponding structure declared in< X11/ ext ensi ons/ Xl nput . h
>. All event structures have the following common members:

28

Input Extension

type Set to the event type number that uniquely identifies it. For example,
when the X server reportsaDevi ceKeyPr ess event to aclient ap-
plication, it sends an XDevi ceKeyPr essEvent structure.

serial Set from the serial number reported in the protocol but expanded from
the 16-bit least significant bitsto afull 32-bit value.

send_event Setto Tr ue if the event came from an XSendEvent request.
display Set to a pointer to a structure that defines the display on which the
event was read.

Extension event structures report the current position of the X pointer. In addition, if the device reports
motion data and is reporting absolute data, the current value of any valuators the device contains is also
reported.

Device Key Events

Key events from extension devices contain all the information that is contained in akey event from the X
keyboard. In addition, they contain adevice |D and report the current value of any valuators on the device,
if that device is reporting absolute data. If data for more than six valuators is being reported, more than
one key event will be sent. The axes_count member contains the number of axes that are being reported.
The server sends as many of these events as are needed to report the device data. Each event contains the
total number of axes reported in the axes_count member and the first axis reported in the current event in
the first_axis member. If the device supportsinput class Val uat ors , but is not reporting absolute
mode data, the axes_count member contains zero (0).

Thelocation reported in the x, y and X_root, y_root membersis the location of the core X pointer.

The XDevi ceKeyEvent structureis defined as follows:

typedef struct {

int type; /* of event */

unsi gned | ong serial; /* # of last request processed */

Bool send_event; /[* true if from SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */
W ndow wi ndow; /* "event" wi ndow reported relative to */
XI D devi cei d;

W ndow r oot ; /* root wi ndow event occurred on */

W ndow subwi ndow; /* child wi ndow */

Time tine; /[* mlliseconds */

int x, vy; /* X, y coordinates in event w ndow */
int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */
unsi gned int state; /* key or button mask */

unsi gned int keycode; [* detail */

Bool sane_screen; /* sane screen flag */

unsi gned int device_state; /* device key or button mask */

unsi gned char axes_count;
unsi gned char first_axis;
int axi s_data[6];

} XDevi ceKeyEvent;

29

Input Extension

t ypedef XDevi ceKeyEvent XDevi ceKeyPressedEvent;
typedef XDevi ceKeyEvent XDevi ceKeyRel easedEvent;

Device Button Events

Button events from extension devices contain all the information that is contained in a button event from
the X pointer. In addition, they contain a device ID and report the current value of any valuators on the
deviceif that deviceis reporting absolute data. If data for more than six valuators is being reported, more
than one button event may be sent. The axes_count member contains the number of axes that are being
reported. The server sends as many of these events as are needed to report the device data. Each event
contains the total number of axes reported in the axes_count member and the first axis reported in the
current event in the first_axis member. If the device supports input class Val uat ors , butis not
reporting absolute mode data, the axes_count member contains zero (0).

Thelocation reported in the x, y and X_root, y_root membersis the location of the core X pointer.

typedef struct {

int type; /* of event */

unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if froma SendEvent request */

Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow; /* "event" wi ndow reported relative to */
XI D devi cei d;

W ndow r oot ; /* root wi ndow that the event occurred on */
W ndow subwi ndow; /* child wi ndow */

Time tine; /[* mlliseconds */

int x, vy; /* X, y coordinates in event w ndow */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsi gned int state; /* key or button mask */

unsi gned int button; [* detail */

Bool sane_screen; /* sane screen flag */

unsi gned int device_state; /* device key or button mask */

unsi gned char axes_count;
unsi gned char first_axis;
int axi s_data[6];

} XDevi ceButt onEvent;

t ypedef XDevi ceButtonEvent XDevi ceButtonPressedEvent;
t ypedef XDevi ceButtonEvent XDevi ceButtonRel easedEvent;

Device Motion Events

Mation events from extension devices contain all the information that is contained in a motion event from
the X pointer. In addition, they contain a device ID and report the current value of any valuators on the
device.

The location reported in the x, y and x_root, y_root members is the location of the core X pointer, and
so is2-dimensional.

Extension motion devices may report motion data for a variable number of axes. The axes_count member
containsthe number of axesthat are being reported. The server sends as many of these events as are needed

30

Input Extension

to report the device data. Each event contains the total number of axes reported in the axes_count member
and the first axis reported in the current event in the first_axis member.

typedef struct {

int type;
unsi gned | ong serial;
Bool send_event;

Di spl ay *di spl ay;
W ndow wi ndow;

Xl D devi cei d;

W ndow r oot ;

W ndow subwi ndow,
Time time;

int x, vy;

int x_root;

int y_root;

unsi gned int state;
char is_hint;
Bool sane_screen;

unsi gned int device_state;

unsi gned char axes_count;
unsi gned char first_axis;
int axi s_data[6];

} XDevi ceMbdti onEvent;

Device Focus Events

/*
/*
/*
/*
/*

of event */

of |ast request processed by server *
true if froma SendEvent request */

Di splay the event was read from */
"event" w ndow reported relative to */
/* root window that the event occurred on
/* child wi ndow */

/[* mlliseconds */

/* X, y coordinates in event w ndow */

/* coordinates relative to root */

/* coordinates relative to root */

/* key or button mask */

[* detail */

/* sane screen flag */

/* device key or button mask */

These events are equivalent to the core focus events. They contain the same information, with the addition
of adevice ID to identify which device has had a focus change, and a timestamp.

Devi ceFocusl nand Devi ceFocusQut eventsare generated for focus changes of extension devices
in the same manner as core focus events are generated.

typedef struct {

int type;
unsi gned | ong serial;
Bool send_event;

Di spl ay *di spl ay;
W ndow wi ndow;

Xl D devi cei d;

i nt node;

int detail;

Time tine;
} XDevi ceFocusChangeEvent ;

/*
/*
/*
/*
/*

b I

/

of event */

of |ast request processed by server */
true if this came froma SendEvent request
Di splay the event was read from */

"event" window it is reported relative to *
Noti fyNormal, NotifyGab, NotifyUngrab */
Noti fyAncestor, NotifyVirtual, Notifylnferi
Not i f yNonLi near, Noti f yNonLi near Virtual, Not
Not i f yPoi nt er Root, Noti fyDet ail None

31

Input Extension

t ypedef XDevi ceFocusChangeEvent XDevi ceFocusl nEvent;
t ypedef XDevi ceFocusChangeEvent XDevi ceFocusCQut Event;

Device StateNotify Event

This event is analogous to the core keymap event but reports the current state of the device for each input
classthat it supports. It is generated after every Devi ceFocus| n event and Ent er Not i f y event and
is delivered to clients who have selected XDevi ceSt at eNot i fy events.

If the device supportsinput classVal uat or s , themode member intheXVal uat or St at us structure
isabitmask that reports the device mode, proximity state, and other state information. The following bits
are currently defined:

0x01 Relative = 0, Absolute =1
0x02 InProximty =0, QuOProximty =1

If the device supports more valuators than can be reported in asingle XEvent , multiple XDevi ceS-
t at eNot i fy eventswill be generated.

typedef struct {
unsi gned char cl ass;
unsi gned char |ength;
} Xl nputd ass;

typedef struct {

int type;

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this cane froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow;
XI D devi cei d;
Time time;
i nt num cl asses;
char dat a[64];
} XDevi ceSt at eNoti f yEvent ;

typedef struct {
unsi gned char cl ass;
unsi gned char |ength;
unsi gned char num val uat ors;
unsi gned char node;
i nt val uators[6];
} Xval uat or St at us;

typedef struct {
unsi gned char cl ass;
unsi gned char |ength;
short num keys;

32

Input Extension

char keys[32];
} XKeySt at us;

typedef struct {
unsi gned char cl ass;
unsi gned char |ength;
short num buttons;
char buttons[32];

} XButtonSt at us;

Device Mapping Event

Thisevent isequivalent tothecoreMappi ngNot i f y event. It notifiesclient programswhen the mapping
of keys, modifiers, or buttons on an extension device has changed.

typedef struct {
int type;
unsi gned | ong serial;
Bool send_event;
Di spl ay *di spl ay;
W ndow wi ndow,
XI D devi cei d;
Time tine;
i nt request;
int first_keycode;
int count;

} XDevi ceMappi ngEvent ;

ChangeDeviceNotify Event

This event has no equivalent in the core protocal. It notifies client programs when one of the core devices
has been changed.

typedef struct {
int type;
unsi gned | ong serial;
Bool send_event;
Di spl ay *di spl ay;
W ndow wi ndow,
XI D devi cei d;
Time tine;
i nt request;
} XChangeDevi ceNot i f yEvent;

Proximity Events

These events have no equivalent in the core protocol. Someinput devices such as graphicstablets or touch-
screens may send these events to indicate that a stylus has moved into or out of contact with a positional
sensing surface.

33

Input Extension

The event contains the current value of any valuators on the device if that device is reporting absolute
data. If data for more than six valuators is being reported, more than one proximity event may be sent.
The axes_count member contains the number of axesthat are being reported. The server sends as many of
these events as are needed to report the device data. Each event contains the total number of axes reported
in the axes_count member and the first axis reported in the current event in the first_axis member. If the
device supports input class Val uators , but is not reporting absolute mode data, the axes_count
member contains zero (0).

typedef struct {

int type; /* Proximtyln or ProximtyQut */

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this canme froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow;
XI D devi cei d;
W ndow r oot ;
W ndow subwi ndow;
Time tinme;
int x, vy;
int x_root, y root;
unsi gned int state;
Bool sane_screen;
unsi gned int device_state; /* device key or button nask */
unsi gned char axes_count;
unsi gned char first_axis;
int axis_data[6];
} XProximtyNotifyEvent;

typedef XProximtyNotifyEvent XProximtylnEvent;
typedef XProxinityNotifyEvent XProximtyQutEvent;

Event Handling Functions

This section discusses the X Input Extension event handling functions that allow you to:
» Determine the extension version

 List the available devices

» Enable and disable extension devices

 Change the mode of adevice

* Initialize valuators on an input device

» Get input device controls

» Change input device controls

» Select extension device events

» Determine selected device events

Input Extension

 Control event propogation
» Send an event

» Get motion history

Determining the Extension Version

XExt ensi onVer si on * XGet Ext ensi onVersi on(*di splay, *name);
display Specifies the connection to the X server.
name Specifies the name of the desired extension.

XGet Ext ensi onVer si on alowsaclient to determine whether a server supports the desired version
of the input extension.

The XExt ensi onVer si on structure returns information about the version of the extension supported
by the server and is defined as follows:

typedef struct {
Bool present;
short mmj or_version;
short m nor _version;
} XExt ensi onVer si on;

The major and minor versions can be compared with constants defined in the header file < X11/ ex-
tensi ons/ Xl . h >. Eachversion isasuperset of the previous versions.

Y ou should use XFr ee. to free the data returned by this function.

Listing Available Devices

A client program that wishes to access a specific device must first determine whether that device is con-
nected to the X server. This is done through the XLi st | nput Devi ces function, which will return
alist of al devices that can be opened by the X server. The client program can use one of the names
defined inthe< X11/ ext ensi ons/ Xl . h > header filein an XI nt er nAt omrequest to determine
the device type of the desired device. This type can then be compared with the device types returned by
the XLi st | nput Devi ces request.

XDevi cel nfo * XLi st nput Devi ces(*di splay, *ndevices);
display Specifies the connection to the X server.

ndevices Specifies the address of a variable into which the server can return the
number of input devices available to the X server.

XLi st | nput Devi ces alowsaclient to determine which devices are available for X input and infor-
mation about those devices. An array of XDevi cel nf o structures is returned, with one element in the
array for each device. The number of devicesis returned in the ndevices argument.

The X pointer device and X keyboard device are reported, aswell as all available extension input devices.
The use member of the XDevi cel nf o structure specifies the current use of the device. If the value of

35

Input Extension

this member is| sXPoi nt er , the deviceisthe X pointer device. If thevalueis| sXKeyboard
the device isthe X keyboard device. If thevalueis| sXExt ensi onDevi ce , thedeviceisavailable
for use as an extension input device.

Each XDevi cel nf o entry containsapointer to alist of structuresthat describe the characteristics of each
classof input supported by that device. The num_classes member containsthe number of entriesinthat list.

If the device supportsinput classVal uat or s , one of the structures pointed to by the XDevi cel nf o
structure will be an XVal uat or | nf o structure. The axes member of that structure contains the address
of an array of XAxi sl nf o structures. Thereis one element in this array for each axis of motion reported
by the device. The number of elementsin thisarray is contained in the num_axes element of the XVval u-
at or I nf o structure. The size of the motion buffer for the device is reported in the motion_buffer mem-
ber of the XVal uat or | nf o structure.

The XDevi cel nf o structure is defined as follows:

t ypedef struct _XDevicelnfo {

XIDid;

Atom type;

char *nane;

i nt num cl asses;

int use;

XAnyC assPtr i nputcl assi nfo;
} XDevi cel nf o;

The structures pointed to by the XDevi cel nf o structure are defined as follows:

typedef struct _XKeylnfo {
XI D cl ass;
int |ength;
unsi gned short m n_keycode;
unsi gned short nax_keycode;
unsi gned short num keys;

} XKeyl nf o;

typedef struct _XButtonlnfo {
XI D cl ass;
int |ength;
short num buttons;

} XButtonl nf o;

typedef struct _XValuatorlnfo {
XI D cl ass;
int |ength;
unsi gned char num axes;
unsi gned char node;
unsi gned | ong notion_buffer;
XAxi sl nfoPtr axes;

} Xval uat or | nf o;

36

Input Extension

The XAxi sl nf o structure pointed to by the XVal uat or | nf o structure is defined as follows:

typedef struct _XAxislInfo {
int resolution;
int mn_val ue;
i nt max_val ue;

} XAxi sl nfo;

The following atom names are defined inthe < X11/ ext ensi ons/ Xl . h > header file.

MOUSE QUADRATURE
TABLET SPACEBALL
KEYBOARD DATAGLOVE
TOUCHSCREEN EYETRACKER
TOUCHPAD CURSORKEYS
BUTTONBOX FOOTMOUSE
BARCODE | D_MODULE
KNOB_BOX ONE_KNOB
TRACKBALL NI NE_KNOB\ s+1

These names can be used in an XI nt er nAt omrequest to return an atom that can be used for comparison
with the type member of the XDevi cel nf o structure.

XLi st | nput Devi ces returns NULL if there are no input devicesto list.
To free the datareturned by XLi st | nput Devi ces , use XFr eeDevi celLi st
void XFreeDevicelList(*list);

list Specifies the pointer to the XDevi cel nf o array returned by a previous call
to XLi st | nput Devi ces .

XFreeDevi ceLi st freesthelist of input device information.

Enabling and Disabling Extension Devices

Each client program that wishesto access an extension device must request that the server open that device
by callingthe XOpenDevi ce function.

XDevice * XOpenDevice(*display, device_id);
display Specifies the connection to the X server.

device id Specifies the ID that uniquely identifies the device to be opened. This
ID isobtained from the XLi st | nput Devi ces request.

XOpenDevi ce opensthedevicefor therequesting client and, on success, returnsan XDevi ce structure,
which is defined as follows:

37

Input Extension

typedef struct {

Xl D devi ce_i d;

i nt num cl asses;

Xl nput C asslnfo *cl asses;
} XDevi ce;

The XDevi ce structure contains a pointer to an array of Xl nput Cl assl nf o structures. Each element
in that array contains information about events of a particular input class supported by the input device.

The XI nput d assl nf o structureis defined as follows:

typedef struct {
unsi gned char input_cl ass;
unsi gned char event _type_base;
} Xl nput d assl nf o;

A client program can determine the event type and event class for a given event by using macros defined
by the input extension. The name of the macro corresponds to the desired event, and the macro is passed
the structure that describes the device from which input is desired, for example:

Devi ceKeyPress(XDevi ce *devi ce, event _type, event cl ass)

Themacrowill fill inthevalues of theevent classtobeusedinan XSel ect Ext ensi onEvent request
to select the event and the event type to be used in comparing with the event types of events received via
XNext Event .

XOpenDevi ce can generate BadDevi ce errors.

Before terminating, the client program should request that the server close the device by calling the
XCl oseDevi ce function.

int XO oseDevice(*display, *device);

display Specifies the connection to the X server.

device Specifies the device to be closed.

XCl oseDevi ce closesthedevicefor the requesting client and freesthe associated XDevi ce structure.

A client may open the same extension device more than once. Requests after the first successful one return
an additional XDevi ce structure with the same information as the first, but otherwise have no effect. A
single XC oseDevi ce request will terminate that client's access to the device.

Closing adevice releases any active or passive grabs the requesting client has established. If the deviceis
frozen only by an active grab of the requesting client, any queued events are released.

If aclient program terminates without closing a device, the server will automatically close that device on
behalf of the client. This does not affect any other clients that may be accessing that device.

38

Input Extension

XCl oseDevi ce can generate BadDevi ce errors.

Changing the Mode of a Device

Some devices are capable of reporting either relative or absolute motion data. To change the mode of a
device from relative to absolute, use XSet Devi ceMbde .

int XSetDeviceMdde(*display, *device, node);

display Specifies the connection to the X server.
device Specifies the device whose mode should be changed.
mode Specifies the mode. You can pass Absol ut e or Rel ati ve .

XSet Devi ceMode allows aclient to request the server to change the mode of a device that is capable
of reporting either absolute positional data or relative motion data. If the device isinvalid or if the client
has not previously requested that the server open the deviceviaan XOpenDevi ce regquest, this request
will fail with a BadDevi ce error. If the device does not support input class Val uat or s or if it is not
capable of reporting the specified mode, the request will fail with aBadMat ch error.

This request will fail and return Devi ceBusy if another client has aready opened the device and re-
guested a different mode.

XSet Devi ceMode can generate BadDevi ce , Badivatch , BadMbde , and Devi ceBusy
errors.

Initializing Valuators on an Input Device

Some devices that report absolute positional data can be initialized to a starting value. Devices that are
capable of reporting relative motion or absolute positional data may require that their valuators be initial-
ized to a starting value after the mode of the deviceis changed to Absol ute .

Toinitidlize the valuators on such adevice, use XSet Devi ceVal uators .

Status XSet Devi ceVal uators(*di splay, *device, numyvaluators);

display Specifies the connection to the X server.

device Specifies the device whose valuators should be initialized.
valuators Specifies the values to which each valuator should be set.
first_valuator Specifiesthe first valuator to be set.

num valuators Specifies the number of valuatorsto be set.

XSet Devi ceVal uat or s initializes the specified valuators on the specified extension input device.
Vauators are numbered beginning with zero. Only the valuators in the range specified by first_valuator
and num_valuators are set. A BadVal ue error resultsif the number of valuators supported by the device
isless than the following expression:

first_valuator + numval uators

39

Input Extension

If the request succeeds, Success isreturned. If the specified device is grabbed by some other client, the
request will fail and a status of Al r eady Gr abbed will be returned.

XSet Devi ceVal uat or s can generate BadDevi ce , BadLength , BadMat ch , and Bad-
Val ue errors.

Getting Input Device Controls

Some input devices support various configuration controls that can be queried or changed by clients. The
set of supported controlswill vary from one input device to another. Requests to manipul ate these controls
will fail if either thetarget X server or thetarget input device does not support the requested device control.

Each device control has a unique identifier. Information passed with each device control variesin length
and is mapped by data structures unique to that device control.

To query adevice control, use XGet Devi ceCont r ol

XDevi ceControl * XGetDeviceControl (*di splay, *device, control);

display Specifies the connection to the X server.
device Specifies the device whose configuration control statusisto be returned.
control Identifies the specific device control to be queried.

XCGet Devi ceCont r ol returnsthe current state of the specified device control. If the target X server
doesnot support that device control, aBadVal ue errorisreturned. If the specified device does not support
that device control, aBadMat ch error isreturned.

If the request is successful, a pointer to ageneric XDevi ceSt at e structure isreturned. The information
returned varies according to the specified control and is mapped by a structure appropriate for that control.
The first two members are common to all device controls and are defined as follows:

typedef struct {
Xl D control;
int length;
} XDevi ceSt at e;
\fP

The control may be compared to constantsdefined inthefile< X11/ ext ensi ons/ Xl . h >. Currently
defined device controlsinclude DEVICE_RESOLUTION.

The information returned for the DEVICE_RESOLUTION control is defined in the XDevi ceResol u-
ti onSt at e structure, which is defined as follows:

typedef struct {
XID control;
int |ength;
i nt num val uat ors;
int *resolutions;

40

Input Extension

int *m n_resol utions;
int *max_resol utions;
} XDevi ceResol uti onSt at e;

Thisdevice control returnsalist of valuators and the range of valid resolutions allowed for each. Valuators
are numbered beginning with zero (0). Resolutions for all valuators on the device are returned. For each
valuator i on the device, resolutiong[i] returns the current setting of the resolution, min_resolutiong[i]
returns the minimum valid setting, and max_resolutiong[i] returns the maximum valid setting.

When this control is specified, XGet Devi ceCont r ol failswith a BadMat ch error if the specified
device has no valuators.

XCet Devi ceCont r ol can generate BadMat ch and BadVal ue errors.

Changing Input Device Controls

Some input devices support various configuration controls that can be changed by clients. Typically, this
would be doneto initialize the device to aknown state or configuration. The set of supported controls will
vary from one input device to another. Requests to manipul ate these controlswill fail if either the target X
server or the target input device does not support the requested device control. Setting the device control
will also fail if the target input device is grabbed by another client or is open by another client and has
been set to a conflicting state.

Each device control has a unique identifier. Information passed with each device control variesin length
and is mapped by data structures unique to that device control.

To change adevice control, use XChangeDevi ceCont r ol

Status XChangeDevi ceControl (*di splay, *device, control, *value);
display Specifies the connection to the X server.

device Specifies the device whose configuration control statusis to be modified.
control I dentifies the specific device control to be changed.

value Specifies a pointer to an XDevi ceControl structure that describes

which control isto be changed and how it isto be changed.

XChangeDevi ceCont r ol changes the current state of the specified device control. If the target X
server does not support that device control, a BadVal ue error is returned. If the specified device does
not support that device control, a BadVat ch error is returned. If another client has the target device
grabbed, a status of Al r eadyGr abbed is returned. If another client has the device open and has set it
to a conflicting state, a status of Devi ceBusy isreturned. If the request fails for any reason, the device
control will not be changed.

If the request is successful, the device control will be changed and a status of Success isreturned. The
information passed varies according to the specified control and is mapped by a structure appropriate for
that control. The first two members are common to al device controls:

typedef struct {
XID control;
int |ength;

} XDevi ceControl;

41

Input Extension

The control may be set using constants defined in the < X11/ ext ensi ons/ Xl . h > header file.
Currently defined device controlsinclude DEVICE_RESOLUTION.

The information that can be changed by the DEVICE_RESOLUTION control is defined in the XDe-
vi ceResol uti onCont r ol structure, which is defined as follows:

t ypedef struct {
XID control;
int length;
int first_valuator;
i nt num_val uat ors;
int *resol utions;
} XDevi ceResol uti onControl;

This device control changes the resolution of the specified valuators on the specified extension in-
put device. Valuators are numbered beginning with zero. Only the valuators in the range specified by
first valuator and num_valuators are set. A value of -1 in the resolutions list indicates that the resolution
for this valuator is not to be changed. The num_valuators member specifies the number of valuators in
the resolutions list.

Whenthiscontrol isspecified, XChangeDevi ceContr ol failswithaBadMat ch error if the specified
devicehasnovaluators. If aresolutionisspecified that isnot within therange of valid values (asreturned by
XGet Devi ceControl), XChangeDevi ceControl failswithaBadVal ue error. ABadVal ue
error results if the number of valuators supported by the device is less than the following expression:

first_valuator + numval uators,

XChangeDevi ceCont r ol can generate BadMat ch and BadVal ue errors.

Selecting Extension Device Events

To select device input events, use XSel ect Ext ensi onEvent . The parameters passed are a pointer
to alist of classes that define the desired event types and devices, a count of the number of elementsin
thelist, and the ID of the window from which events are desired.

i nt XSel ect Ext ensi onEvent (*di spl ay, wi ndow, *event |ist,
event _count);

display Specifies the connection to the X server.

window Specifies the ID of the window from which the client wishes to re-
ceive events.

event_list Specifies a pointer to an array of event classes that specify which
events are desired.

event_count Specifies the number of elementsin the event_list.

XSel ect Ext ensi onEvent requests the server to send events that match the events and devices
described by the event list and that come from the requested window. The elements of the XEvent Cl ass

42

Input Extension

array are the event_class values abtained by invoking a macro with the pointer to an XDevi ce structure
returned by the XOpenDevi ce request. For example, the Devi ceKeyPr ess macro would return
the XEvent Cl ass for Devi ceKeyPr ess events from the specified device if it were invoked in the
following form:

Devi ceKeyPress (XDevi ce *device, event_type, event cl ass)

Macros are defined for the following event classes:

Devi ceKeyPr ess

Devi ceKeyRel ease

Devi ceBut t onPress

Devi ceBut t onRel ease
Devi ceMbdt i onNot i fy
Devi ceFocusl n

Devi ceFocusQut

Proxi mtyln

Pr oxi nmi t yQut

Devi ceSt at eNoti fy

Devi ceMappi ngNot i fy
ChangeDevi ceNot i fy
Devi cePoi nt er Mot i onHi nt
Devi ceButt on1Moti on
Devi ceBut t on2Mot i on
Devi ceBut t on3Mbt i on,
Devi ceBut t on4Mot i on
Devi ceBut t on5Mot i on
Devi ceBut t onMot i on,
Devi ceOwner Gr abBut t on
Devi ceBut t onPressG ab

To get the next available event from within a client program, use the core XNext Event function. This
returns the next event whether it came from a core device or an extension device.

Succeeding XSel ect Ext ensi onEvent requests using event classes for the same device as was
specified on a previous request will replace the previous set of selected events from that device with the
new set.

XSel ect Ext ensi onEvent can generate BadAccess , BadCd ass , BadLength , and
BadW ndowerrors.

Determining Selected Device Events

To determine which extension events are currently selected from a given window, use XCet Sel ect -
edExt ensi onEvents .

i nt XGet Sel ect edExt ensi onEvent s(*di spl ay, wi ndow,
*this_client_count, **this client, *all _clients_count,
**all _clients);

display Specifies the connection to the X server.

43

Input Extension

window Specifies the ID of the window from which the client wishes to
receive events.

this_client_count Returns the number of elementsin the this client list.

this client Returns alist of XEvent Cl asses that specify which events are

selected by this client.
all_clients_count Returns the number of elementsin theall_clientslist.

all_clients Returns alist of XEvent Cl asses that specify which events are
selected by all clients.

XCet Sel ect edExt ensi onEvent s returnspointersto two event classarrays. Oneliststhe extension
events selected by thisclient from the specified window. The other liststhe extension events selected by all
clientsfrom the specified window. Thisinformation is analogous to that returned in your_event_mask and
all_event_masksof the XW ndowAt t r i but es structurewhen an XGet W ndowAt t ri but es request
ismade. To free the two arrays returned by this function, use XFr ee.

XCet Sel ect edExt ensi onEvent s can generate BadW ndow errors.

Controlling Event Propagation

Extension events propagate up the window hierarchy in the same manner as core events. If awindow is
not interested in an extension event, it usually propagates to the closest ancestor that is interested, unless
the dont_propagate list prohibitsit. Grabs of extension devices may alter the set of windows that receive
aparticular extension event.

Client programs may control event propagation through the use of the following two functions:
XChangeDevi ceDont Pr opagat eLi st and XGet Devi ceDont Pr opagat eLi st

i nt XChangeDevi ceDont Propagat eLi st (*di splay, w ndow, event_count,
*events, node);

display Specifies the connection to the X server.

window Specifies the desired window.

event_count Specifies the number of elementsin the eventslist.

events Specifies apointer to the list of XEventClasses.

mode Specifies the mode. You can pass AddToLi st or Del et eFrom
Li st

XChangeDevi ceDont Propagat eLi st adds an event to or deletes an event from the
do_not_propagate list of extension events for the specified window. Thereisone list per window, and the
list remains for the life of the window. Thelist is not altered if a client that changed the list terminates.

Suppression of event propagation is not allowed for all events. If a specified XEvent Cl ass isinvalid
because suppression of that event is not allowed, aBadC ass error results.

XChangeDevi ceDont Pr opagat eLi st can generate BadCl ass , Badvbde , and BadW n-
dowerrors.

XEvent Cl ass * XGet Devi ceDont Propagat eLi st (*di spl ay, wi ndow,
*event _count);

Input Extension

display Specifies the connection to the X server.
window Specifies the desired window.
event_count Returnsthe number of elementsinthe array returned by thisfunction.

XGet Devi ceDont Pr opagat eLi st allows a client to determine the do_not_propagate list of ex-
tension events for the specified window. It returns an array of XEvent Cl ass , each XEvent Cl ass
representing a device/event type pair. To free the data returned by this function, use XFr ee.

XGet Devi ceDont Pr opagat eLi st can generate BadW ndow errors.
Sending an Event

To send an extension event to another client, use XSendExt ensi onEvent

i nt XSendExt ensi onEvent (*di spl ay, *devi ce, wi ndow, pr opagat e,
event _count, *event list, *event);

display Specifies the connection to the X server.
device Specifies the device whose ID is recorded in the event.
window Specifies the destination window ID. You can pass a window ID,

Poi nt er W ndowor | nput Focus .

propagate Specifies aboolean value that is either Tr ue or Fal se .
event_count Specifies the number of elementsin the event_list array.
event_list Specifies apointer to an array of XEvent Cl ass .
event Specifies a pointer to the event that is to be sent.

XSendExt ensi onEvent identifies the destination window, determines which clients should receive
the specified event, and ignoresany activegrabs. It requiresalist of XEvent C ass to be specified. These
are obtained by opening an input device withthe XOpenDevi ce request.

XSendExt ensi onEvent usesthe window argument to identify the destination window as follows:
* If you pass Poi nt er W ndow , the destination window is the window that contains the pointer.

 If you pass | nput Focus and if the focus window contains the pointer, the destination window is
the window that contains the pointer. If the focus window does not contain the pointer, the destination
window is the focus window.

To determine which clients should receive the specified events, XSendExt ensi onEvent uses the
propagate argument as follows:

» If propagate is Fal se , the event is sent to every client selecting from the destination window any
of the events specified in the event_list array.

 If propagate is True and no clients have selected from the destination window any of the events
specified in the event_list array, the destination is replaced with the closest ancestor of destination for
which some client has selected one of the specified events and for which no intervening window has
that event in its do_not_propagate mask. If no such window exists, or if the window is an ancestor of
the focus window, and | nput Focus was originally specified as the destination, the event is not sent

45

Input Extension

to any clients. Otherwise, the event is reported to every client selecting on the final destination any of
the events specified in event_list.

Theeventinthe XEvent structure must be one of the events defined by the input extension, so that the X
server can correctly byte swap the contents as necessary. The contents of the event are otherwise unaltered
and unchecked by the X server except to force send_event to Tr ue in the forwarded event and to set the
sequence number in the event correctly.

XSendExt ensi onEvent returns zero if the conversion-to-wire protocol failed; otherwise, it returns
nonzero.

XSendExt ensi onEvent can generate BadCl ass , BadDevi ce , BadVal ue , and Bad-
W ndowerrors.

Getting Motion History

XDevi ceTi mneCoord * XCet Devi ceMbt i onEvent s(axi s_count _return),
*di spl ay, *devi ce, st op, *nevents_return, *node_return,
*axi s_count_return);

display Specifies the connection to the X server.

device Specifies the desired device.

start Specifies the start time.

stop Specifies the stop time.

nevents return Returns the number of positions in the motion buffer returned for
this request.

mode_return Returnsthe mode of the neventsinformation. The mode will be one

of thefollowing: Absol ut e or Rel ati ve .

axis_count_return Returns the number of axes reported in each of the positions re-
turned.

XCet Devi ceMot i onEvent s returns all positions in the device's motion history buffer that fall be-
tween the specified start and stop timesinclusive. If the start time isin the future or is later than the stop
time, no positions are returned.

The return type for this function isan XDevi ceTi meCoor d structure, which is defined as follows:

typedef struct {

Tinme tinmne;

unsi gned int *data;
} XDevi ceTi meCoor d;

The data member is a pointer to an array of dataitems. Each item is of type int, and thereis one data item
per axis of motion reported by the device. The number of axes reported by the device is returned in the
axis_count variable.

Thevalue of the data items depends on the mode of the device. The modeisreturned in the mode variable.
If the mode is Absol ut e , the dataitems are the raw values generated by the device. These may be

46

Input Extension

scaled by the client program using the maximum val uesthat the device can generate for each axis of motion
that it reports. The maximum value for each axisis reported in the max_val member of the XAxi sl nf o
structure, which is part of the information returned by the XLi st | nput Devi ces request.

If the modeisRel ati ve , the dataitems are the relative values generated by the device. The client
program must choose an initial position for the device and maintain a current position by accumulating
these relative values.

Consecutivecallsto XGet Devi ceMot i onEvent s can return data of different modes, that is, if some
client program has changed the mode of the deviceviaan XSet Devi ceMode request.

XGet Devi ceMot i onEvent s can generate BadDevi ce and BadMat ch errors.
Tofreethedatareturned by XGet Devi ceMbt i onEvent's , useXFr eeDevi ceMot i onEvents .
void XFreeDevi ceMdtionEvents(*events);

events Specifies the pointer to the XDevi ceTi meCoor d array returned by a pre-
vious call to XGet Devi ceMot i onEvents .

XFr eeDevi ceMbt i onEvent s freesthe specified array of motion information. Appendi x A

The following information is contained in the <X11/ ext ensi ons/ Xl nput . h>and <X11/ ext en-
si ons/ Xl . h> header files:

/* Definitions used by the library and client */

#i fndef _XI NPUT_H_
#define _XINPUT_H_

#ifndef XLIB H_
#i ncl ude <X11/ Xli b. h>
#endi f

#i fndef XI_H_
#i ncl ude "Xl . h"

#endi f

#define _devi ceKeyPress 0
#defi ne _devi ceKeyRel ease 1
#define _devi ceButtonPress 0
#defi ne _devi ceButtonRel ease 1
#define _deviceMtionNotify 0
#defi ne _devi ceFocusln 0
#defi ne _devi ceFocusQut 1
#define _proximtyln 0
#defi ne _proximtyQut 1

47

Input Extension

#defi ne _deviceStateNotify 0
#def i ne _devi ceMappi ngNotify 1
#def i ne _changeDevi ceNotify 2

#def i ne Fi ndTypeAndC ass(d, type, class, classid, offset) \
{ int i; Xinputd asslinfo *ip; \
type = 0; class = 0; \
for (i=0, ip= ((XDevice *) d)->classes; \
i< ((XDevice *) d)->numcl asses; \
i ++, ip+t) \
if (ip->input_class == classid) \
{type = ip->event_type_base + offset; \
class = ((XDevice *) d)->device_id << 8 | type;}}

#def i ne Devi ceKeyPress(d, type, class) \
Fi ndTypeAndd ass(d, type, class, KeyCd ass, _devi ceKeyPress)

#def i ne Devi ceKeyRel ease(d, type, class) \
Fi ndTypeAndd ass(d, type, class, Keyd ass, _devi ceKeyRel ease)

#def i ne Devi ceButtonPress(d, type, class) \
Fi ndTypeAndd ass(d, type, class, ButtonC ass, _devi ceButtonPress)

#def i ne Devi ceButtonRel ease(d, type, class) \
Fi ndTypeAndd ass(d, type, class, ButtonC ass, _deviceButtonRel ease)

#def i ne Devi ceMotionNotify(d, type, class) \
Fi ndTypeAndd ass(d, type, class, Valuatord ass, _deviceMtionNotify)

#def i ne Devi ceFocusln(d, type, class) \
Fi ndTypeAndd ass(d, type, class, FocusCd ass, _deviceFocusln)

#def i ne Devi ceFocusQut (d, type, class) \
Fi ndTypeAndd ass(d, type, class, FocusC ass, _devi ceFocusQut)

#define Proximtyln(d, type, class) \
Fi ndTypeAndd ass(d, type, class, ProximtyC ass, _proximnmtyln)

#define ProximtyQut(d, type, class) \
Fi ndTypeAndd ass(d, type, class, ProximtyC ass, _proxinmtyCut)

#def i ne DeviceStateNotify(d, type, class) \
Fi ndTypeAndd ass(d, type, class, Oherd ass, _deviceStateNotify)

#def i ne Devi ceMappi ngNoti fy(d, type, class) \
Fi ndTypeAndd ass(d, type, class, Qherd ass, _deviceMappi ngNotify)

#def i ne ChangeDevi ceNotify(d, type, class) \
Fi ndTypeAndd ass(d, type, class, Oherd ass, _changeDeviceNotify)

#def i ne Devi cePoi nterMtionH nt(d, type, class) \

{ class = ((XDevice *) d)->device_id << 8 | _devicePointerMtionHint;}

48

Input Extension

#def i ne Devi ceButtonlMti on(d, class) \

type,

{ class = ((XDevice *) d)->device_id << 8 | _deviceButtonlMdtion;}
#def i ne Devi ceButton2Mtion(d, type, class) \

{ class = ((XDevice *) d)->device_id << 8 | _deviceButton2Mti on;}
#def i ne Devi ceButton3Mdtion(d, type, class) \

{ class = ((XDevice *) d)->device_id << 8 | _deviceButton3Mti on;}
#def i ne Devi ceButtondMtion(d, type, class) \

{ class = ((XDevice *) d)->device_id << 8 | _deviceButton4Mti on;}
#def i ne Devi ceButton5Mdtion(d, type, class) \

{ class = ((XDevice *) d)->device_id << 8 | _deviceButton5MWtion;}
#def i ne Devi ceButtonhbtion(d, type, class) \

{ class = ((XDevice *) d)->device_id << 8 | _deviceButtonhbtion;}
#def i ne Devi ceOnner GrabButton(d, type, class) \

{ class = ((XDevice *) d)->device_id << 8 | _deviceOaner G abButton;}
#def i ne Devi ceButtonPressGrab(d, type, class) \

{ class = ((XDevice *) d)->device_id << 8 | _deviceButtonG ab;}

#def i ne NoExt ensi onEvent (d, type, class) \
{ class ((XDevice *) d)->device_id << 8

_noExt ensi onEvent ; }

#def i ne BadDevi ce(dpy, error) _xibaddevi ce(dpy, &error)

#def i ne BadCl ass(dpy, error) _xibadcl ass(dpy, &error)

#def i ne BadEvent (dpy, error) _xi badevent (dpy, &error)

#def i ne BadMbde(dpy, error) _xi badnode(dpy, &error)

#def i ne Devi ceBusy(dpy, error) _xidevicebusy(dpy, &error)

/***

*

Devi ceKey events. These events are sent
support input class Keys.

The location of the X pointer is reported in the coordinate
fields of the x,y and x_root,y root fields.

by i nput devices that

E I I

/

typedef struct

{

i nt type; /* of event */

unsi gned long serial; /* # of last request processed */

Bool send_event; /[* true if from SendEvent request */

Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow, /* "event" wi ndow reported relative to */
XD devi cei d;

49

Input Extension

W ndow r oot ; /* root wi ndow event occured on */

W ndow subwi ndow, /[* child wi ndow */

Ti me time; /* mlliseconds */

i nt X, Y; /* X, y coordinates in event w ndow */
i nt X_root; /* coordinates relative to root */

i nt y_root; /* coordinates relative to root */
unsi gned i nt st at e; /* key or button mask */

unsi gned i nt keycode; [* detail */

Bool same_screen; [* sane screen flag */

unsi gned i nt device_state; /* device key or button mask */
unsi gned char axes_count;

unsi gned char first_axis;

i nt axi s_dat a[6] ;

} XDevi ceKeyEvent;

t ypedef XDevi ceKeyEvent XDevi ceKeyPressedEvent;
typedef XDevi ceKeyEvent XDevi ceKeyRel easedEvent;

/***

*

* DeviceButton events. These events are sent by extension devices

* that support input class Buttons.
*

*/
typedef struct {
i nt type; /* of event */
unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */
W ndow wi ndow, /* "event" wi ndow reported relative to */
XD devi cei d;
W ndow root; /* root wi ndow that the event occured on */
W ndow subwi ndow; /* child wi ndow */
Ti me time; /[* mlliseconds */
i nt X, VY; /* X, y coordinates in event w ndow */
i nt X_root; /* coordinates relative to root */
i nt y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
unsi gned int button; [* detail */
Bool same_screen; [* sane screen flag */

unsigned int device_state; /* device key or button mask */
unsi gned char axes_count;

unsi gned char first_axis;

i nt axi s_dat a[6] ;

} XDevi ceButt onEvent;

t ypedef XDevi ceButtonEvent XDevi ceButtonPressedEvent;
t ypedef XDevi ceButtonEvent XDevi ceButtonRel easedEvent;

/***

*

* DeviceMdtionNotify event. These events are sent by extension devices
* that support input class Val uators.

50

Input Extension

*

*/

typedef struct

{

i nt

unsi gned | ong

Bool

Di spl ay

W ndow
Xl D

W ndow
W ndow
Ti ne

i nt

i nt

i nt

unsi gned

char
Bool

unsi gned
unsi gned
unsi gned

i nt

i nt

i nt
char
char

type;
seri al

send_event;

*di spl ay;
wi ndow,
devi cei d;
r oot ;
subwi ndow;
tine;

X, Y;
X_root;
y_root;
st at e;
is_hint;

sSane_screen;

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

device_state; /

axes_count;
first_axis;

axi s_dat a[6] ;
} XDevi ceMbdti onEvent;

of event */
of |ast request processed by server */
true if froma SendEvent request */

Di splay the event was read from */
"event" w ndow reported relative to */

root wi ndow that the event occured on */
child wi ndow */

mlliseconds */

X, y coordinates in event w ndow */
coordi nates relative to root */

coordi nates relative to root */

key or button mask */

detail */

same screen flag */
* device key or button mask */

/***

*

* Devi ceFocusChange events.
* of an extension device that can be focused is changed.

*

*/

t ypedef struct

{

i nt

unsi gned | ong

Bool

Di spl ay

W ndow
Xl D
i nt
i nt
/*

* NotifyAncestor,
* NotifyNonLi near, Noti fyNonLi near Vi rt ual
* Not i f yPoi nt er Root ,

*/
Ti me

} XDevi ceFocusChangeEvent ;

These events are sent when the focus

type; /* of event */
serial; /* # of last request processed by server */
send_event; /* true if froma SendEvent request */
di spl ay; / Display the event was read from */
wi ndow, /* "event" wi ndow reported relative to */
devi cei d;
node; /* NotifyNormal, NotifyGab, NotifyUngrab */
detail;

NotifyVirtual, Notifylnferior

time;

Not i f yPoi nter,

Not i f yDet ai | None

t ypedef XDevi ceFocusChangeEvent XDevi ceFocusl nEvent;
t ypedef XDevi ceFocusChangeEvent XDevi ceFocusCQut Event;

51

Input Extension

/***

*

* ProximtyNotify events. These events are sent by those absol ute

* positioning devices that are capable of generating proximty information.
*

*/
t ypedef struct
{
i nt type; /[* Proximtyln or ProximtyQut */
unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *display; /* Display the event was read from */
W ndow wi ndow,
XD devi cei d;
W ndow root;
W ndow subwi ndow;
Ti me time;
i nt X, Y;
i nt X_root, y_root;
unsi gned i nt st at e;
Bool sane_screen;
unsi gned i nt device_state; /* device key or button mask */

unsi gned char axes_count;

unsi gned char first_axis;

i nt axi s_dat a[6] ;

} XProximtyNotifyEvent;
typedef XProximtyNotifyEvent XProximtylnEvent;
typedef XProximtyNotifyEvent XProximtyQutEvent;

/***

*

* DeviceStateNotify events are generated on Enter Wndow and Focusln

* for those clients who have sel ected Devi ceSt at e.
*

*/

typedef struct
{
unsi gned char cl ass;
unsi gned char | engt h;

} Xl nputd ass;

typedef struct {

i nt type;

unsi gned | ong serial; /* # of last request processed by server */

Bool send_event; /* true if this cane froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow,

XD devi cei d;

Ti me time;

i nt num cl asses;

char dat a[64] ;

} XDevi ceSt at eNoti fyEvent;

52

Input Extension

typedef struct {
unsi gned char
unsi gned char
unsi gned char
unsi gned char
i nt

} Xval uat or St at us;

typedef struct {
unsi gned char
unsi gned char
short
char

} XKeySt at us;

typedef struct {
unsi gned char
unsi gned char
short
char

} XButtonSt at us;

cl ass;
| engt h;

num val uat ors;

node;

val uat or s[6] ;

cl ass;

| engt h;
num keys;

keys[32];

cl ass;

| engt h;
num but t ons;

butt ons[32];

/***

*

* Devi ceMappi ngNotify event.
mappi ng, or

* modi fier
*

*/

typedef struct {
i nt
unsi gned | ong
Bool
Di spl ay
W ndow
XI D
Ti me
i nt

i nt
i nt

type;

serial; /*
send_event; /*
di spl ay; /
wi ndow, /*
devi cei d;

time;

request; /*

first_keycode;/*
count; [*

} XDevi ceMappi ngEvent ;

Thi s event

of |ast request

i s sent when the key mappi ng,
button mappi ng of an extension device is changed.

processed by server */
true if this canme froma SendEvent

r equest

Di splay the event was read from */

unused */

one of Mappi nghbdifier,

Mappi ngPoi nter */
first keycode */

defines range of change w.

Mappi ngKeyboar d,

first_keycode*/

/***

*

* ChangeDevi ceNotify event.
* XChangeKeyboard or XChangePoi nt er

*
*/
typedef struct {
i nt
unsi gned | ong

type;
serial ; /*

Thi s event

i s sent when an
request is made.
of |ast request

processed by server */

53

Input Extension

Bool send_event; /* true if this came froma SendEvent request
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow, /* unused */

XD devi cei d;

Ti me time;

i nt request; /* NewPoi nter or NewKeyboard */

} XChangeDevi ceNot i f yEvent;

/***

*

Control structures for input devices that support input class

*

* Feedback. These are used by the XGet FeedbackContr ol
* XChangeFeedbackControl functions.
*
*

/

typedef struct {

Xl D cl ass;
i nt | engt h;
Xl D id;

} XFeedbacksSt at e;

typedef struct {

XD cl ass;

i nt | engt h;

XI D i d;

i nt click;

i nt percent;

i nt pitch;

i nt dur ati on;

i nt | ed_mask;

i nt gl obal _auto_repeat;
char aut o_r epeat s[32];

} XKbdFeedbacksSt at e;

typedef struct {

Xl D cl ass;

i nt | engt h;

Xl D id;

i nt accel Num

i nt accel Denom
i nt t hr eshol d;

} XPtrFeedbackSt at e;

typedef struct {

Xl D cl ass;

i nt | engt h;

Xl D id;

i nt resol ution;
i nt m nVal ;

i nt maxVal ;

} Xl nteger FeedbackSt at e;

typedef struct {

and

*/

Input Extension

XD cl ass;

i nt | engt h;

XI D i d;

i nt max_synbol s;

i nt num syms_support ed;

KeySym *syms_supported;
} XStringFeedbackSt at e;

typedef struct {

Xl D cl ass;

i nt | engt h;
XI D i d;

i nt percent;
i nt pitch;

i nt dur ati on;

} XBel | FeedbackSt at e;

typedef struct {

Xl D cl ass;

i nt | engt h;

XI D i d;

i nt | ed_val ues;
i nt | ed_mask;

} XLedFeedbacksSt at e;

typedef struct {

Xl D cl ass;
i nt | engt h;
Xl D id;

} XFeedbackControl ;

typedef struct {

Xl D cl ass;

i nt | engt h;

Xl D id;

i nt accel Num

i nt accel Denom
i nt t hr eshol d;

} XPtrFeedbackControl ;

typedef struct {

Xl D cl ass;

i nt | engt h;

XI D i d;

i nt click;

i nt percent;

i nt pitch;

i nt durati on;

i nt | ed_mask;
i nt | ed_val ue;
i nt key;

i nt aut o_r epeat _node;

} XKbdFeedbackControl ;

55

Input Extension

typedef struct {

XD cl ass;

i nt | engt h;

XI D i d;

i nt num keysyms;

KeySym *syms_t o_di spl ay;
} XStringFeedbackContr ol

typedef struct {

XD cl ass;

i nt | engt h;

XI D i d;

i nt i nt _to_display;

} Xl nteger FeedbackContr ol

typedef struct {

Xl D cl ass;

i nt | engt h;
XI D i d;

i nt percent;
i nt pitch;

i nt durati on;

} XBel | FeedbackCont r ol

typedef struct {

Xl D cl ass;

i nt | engt h;

XI D i d;

i nt | ed_mask;

i nt | ed_val ues;

} XLedFeedbackContr ol

/***
*

* Device control structures.
*

*/

typedef struct {
XD control;
i nt | engt h;
} XDevi ceContr ol

typedef struct {

Xl D control;

i nt | engt h;

i nt first_val uator
i nt num val uat ors;
i nt *resol utions;

} XDevi ceResol uti onContr ol

typedef struct {
XD control;
i nt | engt h;

56

Input Extension

i nt
i nt
i nt
i nt

num val uat ors;
*resol utions;
*m n_resol utions;
*max_resol utions;

} XDevi ceResol uti onSt at e

/***

*

E I I I

An array of XDevicelList structures is returned by the

XLi st | nput Devi ces function. Each entry contains information
about one input device. Anmpong that information is an array of
pointers to structures that describe the characteristics of

t he i nput device.

typedef struct _XAnyd assinfo *XAnyCd assPtr

typedef struct _XAnyd assinfo {

XD cl ass;
i nt | engt h;
} XAnyd assl nf o;

typedef struct _XDevicelnfo *XDevicel nfoPtr

typedef struct _XDevicel nfo

{
XI D

At om

char

i nt

i nt

XAnyCl assPtr

} XDevi cel nf o;

id;
type;
*name,
num cl asses;
use;

i nput cl assi nf o;

typedef struct _XKeylnfo *XKeyl nfoPtr

typedef struct _XKeylnfo

{
XI D

i nt

unsi gned short
unsi gned short
unsi gned short
} XKeyl nf o;

cl ass;

| engt h;
m n_keycode;
max_keycode;
num keys;

typedef struct _XButtonlnfo *XButtonlnfoPtr

typedef struct _XButtonlnfo {

Xl D cl ass;
i nt | engt h;
short num but t ons;

} XButtonl nf o;

57

Input Extension

typedef struct _XAxislnfo *XAxislnfoPtr

typedef struct _XAxislnfo {

i nt resol ution;
i nt m n_val ue;
i nt max_val ue;
} XAxi sl nfo;

typedef struct _XVal uatorlnfo *Xval uatorlnfoPtr

t ypedef struct _XVal uatorlnfo
{
XD cl ass;
i nt | engt h;
unsi gned char num axes;
unsi gned char node;
unsi gned | ong not i on_buf fer
XAxi sl nfoPtr axes;

} Xval uat or | nf o;

/***

*

An XDevice structure is returned by the XOpenDevice function.

It contains an array of pointers to Xlnputd asslnfo structures.

Each contains information about a class of input supported by the
device, including a pointer to an array of data for each type of event
t he device reports.

E I I I

typedef struct {
unsi gned char i nput _cl ass;
unsi gned char event _type_base;
} Xl nput d assl nf o;

typedef struct {

Xl D device_id;
i nt num cl asses;
Xl nput Cl asslnfo *cl asses;

} XDevi ce;

/***

*

* The followi ng structure is used to return information for the
* XGet Sel ect edExt ensi onEvents function
*

*/

typedef struct {
XEvent d ass event _type
XD devi ce;

58

Input Extension

} XEvent Li st;

/***

* The followi ng structure is used to return notion history data from
* an input device that supports the input class Val uators.

* This information is returned by the XGetDeviceMdti onEvents function
*

*

typedef struct {
Ti me time;
i nt *dat a
} XDevi ceTi neCoor d;

/***

*

* Device state structure
* This is returned by the XQueryDeviceState request.

*

*/

typedef struct {
Xl D device_id;
i nt num cl asses;
Xl nput d ass *dat a;

} XDeviceState

/***

*

Note that the node field is a bitfield that reports the Proximty
status of the device as well as the node. The node field should

be OR d with the mask Devi ceMbde and conpared with the val ues

Absol ute and Relative to determ ne the node, and should be OR d

with the mask ProximtyState and conmpared with the values InProximty
and QutOFProximty to determine the proximty state.

E I B T T

typedef struct {

unsi gned char cl ass;

unsi gned char | engt h;

unsi gned char num val uat ors;
unsi gned char node;

i nt *val uat or s;

} Xval uator State

typedef struct {

unsi gned char cl ass;
unsi gned char | engt h;
short num keys;
char keys[32];

} XKeySt at e;

59

Input Extension

typedef struct {

unsi gned char cl ass;

unsi gned char | engt h;
short num but t ons;
char butt ons[32];

} XButtonStat e;

/***

*

* Function definitions.
*

*/

_XFUNCPROTOBEG N

extern int XChangeKeyboar dDevi ce(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */
#endi f
)
extern int XChangePoi nt er Devi ce(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
i nt [* xaxis */,
i nt [* yaxis */
#endi f
)
extern int XG abDevi ce(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
W ndow /* grab_w ndow */,
Bool /* owner Events */,
i nt /* event count */,
XEvent Cl ass* /* event list */,
i nt /* this_device_node */,
i nt /* ot her _devi ces_node */,
Ti me [* time */
#endi f
);
extern int XUngr abDevi ce(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
Ti me [* time */
#endi f
);

60

Input Extension

extern int

XG abDevi ceKey(

#1 f NeedFuncti onPr ot ot ypes

Di spl ay*
XDevi ce*
unsi gned i nt
unsi gned i nt
XDevi ce*

W ndow

Bool

unsi gned i nt
XEvent C ass*

/* display */,
/* device */,
/* key */,
/* nodifiers */,
/* nodifier_device */,
/* grab_w ndow */,
/* owner _events */,
/* event _count */,
/* event list */,
/* this_device_node */,
/* ot her_devi ces_node */

XUngr abDevi ceKey(

/* display */,

i nt
i nt
#endi f
)
extern int
#1 f NeedFuncti onPr ot ot ypes
Di spl ay*
XDevi ce*

unsi gned i nt
unsi gned i nt

/* device */,

/[* key */,

/* nodifiers */,

/* modifier_dev */,
/* grab_w ndow */

XG abDevi ceBut t on(

/* display */,

XDevi ce*
W ndow
#endi f
)
extern int
#1 f NeedFuncti onPr ot ot ypes
Di spl ay*
XDevi ce*

unsi gned i nt
unsi gned i nt
XDevi ce*
W ndow
Bool
unsi gned i nt
XEvent C ass*
i nt
i nt

#endi f

)

extern int

/* device */,
/* button */,
/* nodifiers */,
/* nodifier_device */,
/* grab_w ndow */,
/* owner _events */,
/* event _count */,
/* event list */,
/* this_device_node */,
/* ot her_devi ces_node */

XUngr abDevi ceBut t on(

#1 f NeedFuncti onPr ot ot ypes

Di spl ay*

XDevi ce*

unsi gned i nt

unsi gned i nt

XDevi ce*

W ndow
#endi f

)

/* display */,

/* device */,

/* button */,

/* nodifiers */,

/* modifier_dev */,
/* grab_w ndow */

61

Input Extension

extern int XAl | owDevi ceEvent s(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
i nt /* event node */,
Ti me [* time */
#endi f
)
extern int XGet Devi ceFocus(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
W ndow* [* focus */,
i nt* /* revert_to */,
Ti me* [* time */
#endi f
)
extern int XSet Devi ceFocus(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
W ndow [* focus */,
i nt /* revert_to */,
Ti me [* time */
#endi f
)
ext ern XFeedbackSt at e * XCGet FeedbackCont r ol (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
i nt* /* num feedbacks */
#endi f
)
extern int XFr eeFeedbackLi st (
#1 f NeedFuncti onPr ot ot ypes
XFeedbacksSt at e* [* list */
#endi f
)
extern int XChangeFeedbackCont r ol (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
unsi gned | ong /* mask */,
XFeedbackCont r ol * [* f *]
#endi f
);
extern int XDevi ceBel | (

#1 f NeedFuncti onPr ot ot ypes

62

Input Extension

Di spl ay* /* display */,
XDevi ce* /* device */,
Xl D /* feedbackcl ass */,
Xl D /* feedbackid */,
i nt /* percent */
#endi f
)
extern KeySym * XCGet Devi ceKeyMappi ng(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
#1 f NeedW dePr ot ot ypes
unsi gned i nt [* first */,
#el se
KeyCode [* first */,
#endi f
i nt /* keycount */,
i nt* /* synms_per_code */
#endi f
)
extern int XChangeDevi ceKeyMappi ng(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
i nt [* first */,
i nt /* synms_per_code */,
Key Synt [* keysyns */,
i nt /* count */
#endi f
)
ext ern XModi fi er Keymap * XCGet Devi ceMbdi fi er Mappi ng(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */
#endi f
)
extern int XSet Devi ceModi fi er Mappi ng(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
XModi f i er Keymap* /* nmodmap */
#endi f
);
extern int XSet Devi ceBut t onMappi ng(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
unsi gned char* [* map[] */,
i nt /* nmap */

63

Input Extension

#endi f
)
extern int XGet Devi ceBut t onMappi ng(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
unsi gned char* /[* map[] */,
unsi gned i nt /* nmap */
#endi f
)
extern XDeviceState *XQuer yDevi ceSt at e(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */
#endi f
)
extern int XFr eeDevi ceSt at e(
#1 f NeedFuncti onPr ot ot ypes
XDevi ceSt at e* [* list */
#endi f
)

ext ern XExt ensi onVer si on * XCGet Ext ensi onVer si on(
#1 f NeedFuncti onPr ot ot ypes

Di spl ay* /* display */,
_Xconst char* /* name */
#endi f
)
ext ern XDevi cel nfo *XLi st | nput Devi ces(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
int* /* ndevices */
#endi f
)
extern int XFr eeDevi celLi st (
#1 f NeedFuncti onPr ot ot ypes
XDevi cel nf o* [* list */
#endi f
);
ext ern XDevi ce *XOpenDevi ce(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XI D [*id */
#endi f
);
extern int XCl oseDevi ce(

#1 f NeedFuncti onPr ot ot ypes

Input Extension

Di spl ay* /* display */,
XDevi ce* [* device */
#endi f
)
extern int XSet Devi ceMode(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
i nt [* nmode */
#endi f
)
extern int XSet Devi ceVal uat or s(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
int* /* valuators */,
i nt /* first_valuator */,
i nt /* numval uators */
#endi f
)
ext ern XDevi ceContr ol * XCGet Devi ceCont r ol (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
i nt /* control */
#endi f
)
extern int XChangeDevi ceCont rol (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* [* device */,
i nt /[* control */,
XDevi ceControl * [* d */
#endi f
)
extern int XSel ect Ext ensi onEvent (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
W ndow [* w */,
XEvent Cl ass* /* event list */,
i nt /* count */
#endi f
);
extern int XGet Sel ect edExt ensi onEvent s(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
W ndow [* w */,
i nt* /* this_client_count */,

65

Input Extension

XEvent Cl ass** /* this _client _list */,
i nt* /* all _clients_count */,
XEvent Cl ass** /* all _clients_list */
#endi f
)
extern int XChangeDevi ceDont Pr opagat eLi st (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
W ndow /* wi ndow */,
i nt /* count */,
XEvent Cl ass* /* events */,
i nt /* node */
#endi f
)
extern XEvent O ass * XGet Devi ceDont Pr opagat eLi st (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
W ndow /* wi ndow */,
int* /* count */
#endi f
)
extern Status XSendExt ensi onEvent (
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
W ndow /* dest */,
Bool /[* prop */,
i nt /* count */,
XEvent Cl ass* /* list */,
XEvent * /* event */
#endi f
)
extern XDevi ceTi neCoord * XCGet Devi ceMbt i onEvent s(
#1 f NeedFuncti onPr ot ot ypes
Di spl ay* /* display */,
XDevi ce* /* device */,
Ti ne /* start */,
Ti me /[* stop */,
int* /* nEvents */,
int* /* node */,
i nt* /* axis_count */
#endi f
)
extern int XFr eeDevi ceMbt i onEvent s(
#1 f NeedFuncti onPr ot ot ypes
XDevi ceTi neCoor d* /* events */
#endi f

)

66

Input Extension

extern int XFr eeDevi ceCont r ol (
#1 f NeedFuncti onPr ot ot ypes

XDevi ceControl * /* control */
#endi f

)

_ XFUNCPROTCEND

#endif /* XINPUT_H_ */

/* Definitions used by the server, library and client */

#i fndef _XI _H

#define XI_H_
#def i ne sz_xCet Ext ensi onVer si onReq 8
#def i ne sz_xGCet Ext ensi onVer si onRepl y 32
#def i ne sz_xLi st nput Devi cesReq 4
#def i ne sz_xLi stl nput Devi cesRepl y 32
#def i ne sz_xOpenDevi ceReq 8

#def i ne sz_xOpenDevi ceReply 32
#def i ne sz_xC oseDevi ceReq 8

#def i ne sz_xSet Devi ceMbdeReq 8
#def i ne sz_xSet Devi ceMbdeRepl y 32
#def i ne sz_xSel ect Ext ensi onEvent Req 12
#def i ne sz_xGCet Sel ect edExt ensi onEvent sReq 8
#def i ne sz_xCet Sel ect edExt ensi onEvent sRepl y 32
#def i ne sz_xChangeDevi ceDont Propagat eLi st Req 12
#def i ne sz_xGCet Devi ceDont Propagat eLi st Req 8
#def i ne sz_xCet Devi ceDont Propagat eLi st Repl y 32
#def i ne sz_xCet Devi ceMbt i onEvent sReq 16
#def i ne sz_xCet Devi ceMbti onEvent sRepl y 32
#def i ne sz_xChangeKeyboar dDevi ceReq 8
#def i ne sz_xChangeKeyboar dDevi ceRepl y 32
#def i ne sz_xChangePoi nt er Devi ceReq 8
#def i ne sz_xChangePoi nt er Devi ceRepl y 32
#def i ne sz_xG abDevi ceReq 20

#def i ne sz_xG abDevi ceReply 32
#def i ne sz_xUngr abDevi ceReq 12

#def i ne sz_xG abDevi ceKeyReq 20
#defi ne sz_xG abDevi ceKeyRepl y 32
#def i ne sz_xUngrabDevi ceKeyReq 16
#defi ne sz_xG abDevi ceButt onReq 20
#def i ne sz_xG abDevi ceButtonRepl y 32
#def i ne sz_xUngr abDevi ceButt onReq 16
#defi ne sz_xAl | owDevi ceEvent sReq 12
#def i ne sz_xGCet Devi ceFocusReq 8
#def i ne sz_xCet Devi ceFocusReply 32
#def i ne sz_xSet Devi ceFocusReq 16
#def i ne sz_xCet FeedbackContr ol Req 8
#def i ne sz_xCet FeedbackControl Reply 32
#def i ne sz_xChangeFeedbackCont r ol Req 12
#def i ne sz_xCet Devi ceKeyMappi ngReq 8

67

Input Extension

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i

#def i
#def i

#def i
#def i

#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne

ne
ne

ne
ne

ne

sz_xGet Devi ceKeyMappi ngRepl y 32
sz_xChangeDevi ceKeyMappi ngReq 8
sz_xGet Devi ceModi fi er Mappi ngReq

sz_xSet Devi ceModi fi er Mappi ngReq 8
sz_xSet Devi ceModi fi er Mappi ngRepl y 32
sz_xGet Devi ceBut t onMappi ngReq 8
sz_xGet Devi ceBut t onMappi ngRepl y 32
sz_xSet Devi ceBut t onMappi ngReq 8
sz_xSet Devi ceBut t onMappi ngRepl y 32
sz_xQueryDevi ceSt at eReq 8
sz_xQueryDevi ceSt at eRepl y 32
sz_xSendExt ensi onEvent Req 16
sz_xDevi ceBel | Req 8

sz_xSet Devi ceVal uat or sReq 8
sz_xSet Devi ceVal uat or sRepl y 32
sz_xGet Devi ceCont r ol Req 8
sz_xGet Devi ceControl Reply 32
sz_xChangeDevi ceContr ol Req 8
sz_xChangeDevi ceControl Reply 32

(0]

I NAMVE " Xl nput Ext ensi on"

XI _KEYBOARD " KEYBOARD'
Xl _MOUSE " MOUSE"

XI _TABLET " TABLET"

XI _TOUCHSCREEN " TOUCHSCREEN"
XI _TOUCHPAD " TOUCHPAD'

XI _BARCODE " BARCODE"

XI _BUTTONBOX " BUTTONBOX"

Xl _KNOB_BOX " KNOB_BOX"

XI _ONE_KNOB " ONE_KNOB"

Xl _NI NE_KNOB " NI NE_KNOB"

XI _TRACKBALL " TRACKBALL"

XI _QUADRATURE " QUADRATURE"

XI _| D_MODULE "| D_MODULE"

XI _SPACEBALL " SPACEBALL"

XI _DATAGLOVE " DATAGLOVE"

XI _EYETRACKER " EYETRACKER'

XI _CURSORKEYS " CURSORKEYS"

XI _FOOTMOUSE " FOOTMOUSE"

Dont _Check 0
Xl nput _Initial _Rel ease

Xl nput _Add_XDevi ceBel | 2

Xl nput _Add_XSet Devi ceVal uat or s 3
Xl nput _Add_XChangeDevi ceCont r ol 4

[

Xl _Absent 0
Xl _Present 1

Xl _Initial_Rel ease_Maj or 1
Xl _Initial _Release_M nor 0

Xl _Add_XDevi ceBel | _Maj or 1

68

Input Extension

#define Xl _Add_XDevi ceBel | _M nor

#def i ne Xl _Add_XSet Devi ceVal uat or s_Maj or
#define Xl _Add_XSet Devi ceVal uat ors_M nor

#def i ne Xl _Add_XChangeDevi ceControl _Maj or
#def i ne Xl _Add_XChangeDevi ceControl _M nor

#def i ne DEVI CE_RESOLUTI ON 1

#defi ne NoSuchExt ensi on 1

#defi ne COUNT 0

#defi ne CREATE 1

#defi ne NewPoi nt er 0

#def i ne NewKeyboar d 1

#defi ne XPO NTER 0

#def i ne XKEYBOARD 1

#def i ne UseXKeyboard OxFF

#defi ne | sXPoi nter 0

#def i ne | sXKeyboard 1

#defi ne | sXExt ensi onDevi ce 2

#def i ne AsyncThi sDevi ce 0

#def i ne SyncThi sDevi ce 1

#def i ne Repl ayThi sDevi ce 2

#def i ne AsyncQ her Devi ces 3

#def i ne AsyncAl | 4

#def i ne SyncAll 5

#def i ne Fol | owKeyboard 3

#def i ne Revert ToFol | owKeyboard 3
#def i ne DvAccel Num (1L << 0)
#def i ne DvAccel Denom (1L << 1)
#defi ne DvThreshol d (1L << 2)
#def i ne DvKeyd i ckPer cent (1L<<0)
#def i ne DvPer cent (1L<<1)

#defi ne DvPitch (1L<<2)
#def i ne DvDurati on (1L<<3)

#def i ne DvLed (1L<<4)

#def i ne DvLedMode (1L<<5)

#def i ne DvKey (1L<<6)

#def i ne DvAut oRepeat Mode (1L<<7)
#define DvString (1L << 0)
#def i ne Dvl nt eger (1L << 0)

69

Input Extension

#def i ne Devi ceMode (
#define Rel ative 0
#defi ne Absol ute 1

1L << 0)

#define ProximtyState (1L << 1)
#define InProximty (OL << 1)
#define QutOFProximty (1L << 1)

#defi ne AddToLi st 0
#def i ne Del et eFronLi st 1

#def i ne Keyd ass 0
#defi ne Buttond ass 1
#defi ne Val uator C ass 2
#def i ne FeedbackC ass 3
#defi ne Proxi mtyd ass 4
#defi ne FocusC ass 5
#define O herC ass 6

#def i ne KbdFeedbackd ass 0
#defi ne PtrFeedbackd ass 1
#defi ne StringFeedbackd ass 2
#def i ne | nt eger Feedbackd ass 3
#defi ne LedFeedbackC ass 4
#defi ne Bel | Feedbackd ass 5

#define _devi cePoi nterMtionH nt O

#define _devi ceButtonlMtion 1
#define _devi ceButton2Mtion 2
#define _devi ceButton3Mtion 3
#define _devi ceButton4Motion 4
#define _devi ceButton5Mtion 5
#define _devi ceButtonhMtion 6
#define _devi ceButtonG ab 7
#define _devi ceOmer GrabButton 8
#defi ne _noExt ensi onEvent 9
#defi ne Xl _BadDevi ce 0

#defi ne Xl _BadEvent 1

#defi ne Xl _BadMode 2

#def i ne Xl _Devi ceBusy 3

#define Xl _BadC ass 4

t ypedef unsi gned | ong XEvent d ass;

/***
*

* EXtension version structure.
*

*/

typedef struct {
i nt present;
short maj or _ver si on;

70

Input Extension

short m nor _versi on;
} XExt ensi onVer si on;

#endif /* XI_H_ */

71

Appendix A. Input Extension Protocol
Encoding

Syntactic Conventions
All numbers arein decimal, unless prefixed with #x, in which case they are in hexadecimal (base 16).
The general syntax used to describe requests, replies, errors, events, and compound typesis:

Naneof Thi ng
encode-form

encode-form
Each encode-form describes a single component.

For components described in the protocol as:

name: TYPE

the encode-form is:

N TYPE nane

N is the number of bytes occupied in the data stream, and TY PE is the interpretation of those bytes. For
example,

dept h: CARDS3

becomes:

1 CARD8 depth

For components with a static numeric value the encode-formis:

N val ue name

Thevalueisawaysinterpreted asan N-byteunsigned integer. For example, thefirst two bytes of aWindow
error are always zero (indicating an error in general) and three (indicating the Window error in particular):

72

Input Extension Protocol Encoding

1 0 Error
1 3 code

For components described in the protocol as:

nane: {Nanel, ..., Nanel}

the encode-formiis;

N nane
val uel Nanmel

val uel Nanel
Thevaueisawaysinterpreted as an N-byte unsigned integer. Note that the size of N is sometimes larger
than that strictly required to encode the values. For example:

class: {lnputQutput, |InputOnly, CopyFronParent}

becomes:

2 cl ass
0 CopyFr onPar ent
1 | nput Qut put
2 InputOnly

For components described in the protocoal as:

NAME: TYPE or Alternativel ... or Alternativel

the encode-formiis;

N TYPE NANME
val uel Alternativel

val uel Alternativel

The alternative values are guaranteed not to conflict with the encoding of TY PE. For example:

destinati on: W NDOW or Poi nter Wndow or | nput Focus

becomes:

73

Input Extension Protocol Encoding

4 W NDOW destination
0 Poi nt er W ndow
1 I nput Focus

For components described in the protocoal as:

val ue- mask: BI TMASK

the encode-formiis;

N Bl TMASK val ue- mask
maskl mask- nanel

maskl mask- nanel

The individual bits in the mask are specified and named, and N is 2 or 4. The most-significant bit in a
BITMASK isreserved for use in defining chained (multiword) bitmasks, as extensions augment existing
core requests. The precise interpretation of thishbit isnot yet defined here, although a probable mechanism
is that a 1-hit indicates that another N bytes of bitmask follows, with bits within the overall mask till
interpreted from least-significant to most-significant with an N-byte unit, with N-byte unitsinterpreted in
stream order, and with the overall mask being byte-swapped in individual N-byte units.

For LISTofVALUE encodings, the request is followed by a section of the form:

VALUEs
encode-form

encode-form

listing an encode-form for each VALUE. The NAME in each encode-form keys to the corresponding
BITMASK hit. The encoding of aVVALUE always occupies four bytes, but the number of bytes specified
in the encoding-form indicates how many of the |least-significant bytes are actually used; the remaining
bytes are unused and their values do not matter.

In various cases, the number of bytes occupied by acomponent will be specified by alowercase single-let-
ter variable name instead of a specific numeric value, and often some other component will have its val-
ue specified as a simple numeric expression involving these variables. Components specified with such
expressions are aways interpreted as unsigned integers. The scope of such variables is always just the
enclosing request, reply, error, event, or compound type structure. For example:

2 3+n request length

74

Input Extension Protocol Encoding

4n LI STof PO NT points

For unused bytes (the values of the bytes are undefined and do not matter), the encode-formiis:

N unused

If the number of unused bytesis variable, the encode-form typicaly is:

p unused, p=pad(E)

where E is some expression, and pad(E) isthe number of bytes needed to round E up to amultiple of four.

pad(E) = (4 - (E nmod 4)) nod 4
Common Types
LISTofFOO

* Inthis document the LI1STof notation strictly means some number of repetitions of the FOO encoding;
the actual length of the list is encoded elsewhere.

SETof FOO

» A setisawaysrepresented by a bitmask, with a 1-bit indicating presence in the set.
BITMASK: CARD32
WINDOW: CARD32

BYTE: 8-hit value

INT8: 8-hit signed integer

INT16: 16-bit signed integer
INT32: 32-bit signed integer
CARDS: 8-hit unsigned integer
CARD16: 16-hit unsigned integer
CARD32: 32-hit unsigned integer
TIMESTAMP: CARD32

EVENTCLASS: CARD32

75

Input Extension Protocol Encoding

| NPUTCLASS

0 Keyd ass

1 Buttond ass

2 Val uat or d ass

3 Feedbackd ass
4 Proximtyd ass
5 Focusd ass
6 O herd ass

| NPUTCLASS
0 KbdFeedbackd ass
1 PtrFeedbackd ass
2 StringFeedbackd ass
3 I nteger Feedbackd ass
4 LedFeedbackd ass
5 Bel | Feedbackd ass

I NPUTI NFO
0 KEYI NFO
1 BUTTONI NFO
2 VALUATORI NFO

DEVI CEMODE
0 Rel ative
1 Absolute

PROXI M TYSTATE
O InProximty
1 QutOFProximty

BOOL
0 Fal se
1 True

KEYSYM: CARD32
KEYCODE: CARDS8

BUTTON: CARDS8

76

Input Extension Protocol Encoding

SETof KEYBUTMASK
#x0001 Shift
#x0002 Lock
#x0004 Contr ol
#x0008 Mbdl
#x0010 Mbd2
#x0020 Mbd3
#x0040 Mbd4
#x0080 Mbod5
#x0100 Buttonl
#x0200 Button2
#x0400 Button3
#x0800 Button4
#x1000 Button5
#xe000 unused but nust be zero

SETof KEYMASK
encodi ngs are the sane as for SETof KEYBUTMASK,
#xff00 wunused but must be zero

STRINGS: LISTofCARDS

STR
1 n length of name in bytes
n STRINGS nane

Errors

Request

10 Error
11 code

2 CARD16 sequence number
4 unused

2 CARD16 mi nor opcode

1 CARD8 mmjor opcode

21 unused

Val ue
10 Error
1 2 code

except with

77

Input Extension Protocol Encoding

2 CARD16 sequence number
4 <32-bits> bad val ue

2 CARD16 m nor opcode

1 CARD8 mmjor opcode

21 unused

W ndow
10 Error
1 3 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 m nor opcode
1 CARD8 mmjor opcode
21 unused

Mat ch

10 Error

1 8 code

2 CARD16 sequence number
4 unused

2 CARD16 m nor opcode

1 CARD8 mmjor opcode

21 unused

Access
10 Error
1 10 code
2 CARD16 sequence number
4 unused
2 CARD16 m nor opcode
1 CARD8 mmjor opcode
21 unused

Al'l oc

0O Error

11 code

CARD16 sequence numnber
unused

CARD16 mi nor opcode

CARD8 nmj or opcode

1 unused

NEFEFNANREPRP

78

Input Extension Protocol Encoding

Nane
10 Error
1 15 code
2 CARD16 sequence number
4 unused

2 CARD16 m nor opcode

1 CARD8 mmjor opcode

21 unused

Devi ce

O Error

CARD8 code

CARD16 sequence numnber
unused

CARD16 minor opcode

CARD8 nmj or opcode

1 unused

NEFEFNRANPREPRP

Event
10 Error
CARD8 code

1

2 CARD16 sequence number
4 unused

2 CARD16 m nor opcode

1 CARD8 mmjor opcode

21 unused

Mode

O Error

CARD8 code

CARD16 sequence numnber
unused

CARD16 minor opcode

CARD8 nmj or opcode

1 unused

NEFEFNRANPREPRP

d ass

10 Error

1 CARD8 code

2 CARD16 sequence number
4 unused

79

Input Extension Protocol Encoding

2 CARD16 m nor opcode
1 CARD8 mmjor opcode
21 unused

Keyboards

KEY CODE values are dways greater than 7 (and less than 256).

KEY SYM values with the bit #x10000000 set are reserved as vendor-specific.

The names and encodings of the standard KEY SYM values are contained in appendix F.
Pointers

BUTTON values are numbered starting with one.

Requests

Get Ext ensi onVer si on
CARD8 i nput extension opcode
1 Get Ext ensi onVersi on opcode
2+(n+p)/4 request length
n length of nane

unused
STRING nane

unused, p=pad(n)

T S NDNNNPRFE P

=>
11 Reply

1 1 GCetExtensionVersion opcode
2 CARD16 sequence number

4 0 reply length

2 CARD16 nmjor version

2 CARD16 minor version

1 BOOL present

19 unused

Li st I nput Devi ces

1 CARD8 input extension opcode
1 2 ListlnputDevices opcode

2 1 request length

=>
11 Reply

80

Input Extension Protocol Encoding

12 Li st | nput Devi ces opcode

2 CARD16 seqguence nunber

4 (n+p)/4 reply length

1 CARD8 nunber of input devices

23 unused

n LI STof DEVI CEI NFO i nfo for each input device
p unused, p=pad(n)

DEVI CElI NFO
4 CARD32 device type
1 CARD8 device id
1 CARD8 nunber of input classes this device reports
1 CARD8 device use
0 I sXPoi nter
1 I sXKeyboard
2 | sXExt ensi onDevi ce
1 unused
n LI STof I NPUTINFO input info for each input class
m STR nane
p unused, p=pad(m

I NPUTI NFO KEYI NFO or BUTTONI NFO or VALUATORI NFO

KEYI NFO
10 classid
18 length
1 KEYCOCDE mi ni num keycode
1 KEYCODE maxi mum keycode
2 CARD16 nunber of keys
2 unused
BUTTONI NFO
11 classid
14 length

2 CARD16 nunber of buttons

VALUATORI NFO
12 class id
1 8+12n length
1 n nunber of axes

81

Input Extension Protocol Encoding

1 SETof DEVI CEMODE node
4 CARD32 size of notion buffer
12n LI STof AXISINFO valuator limts

AXI SI NFO
4 CARD32 resolution
4 CARD32 m ni num val ue
4 CARD32 maxi mum val ue

OpenDevi ce

1 CARD8 input extension opcode
1 3 OpenDevice opcode

2 2 request length

1 CARD8 device id

3 unused

=>

11 Reply

13 OpenDevi ce opcode

2 CARD16 seqguence nunber

4 (n+p)/4 reply length

1 CARD8 nunber of input classes

23 unused

n LI STof I NPUTCLASSI NFO i nput cl ass information
p unused, p=pad(n)

| NPUTCLASSI NFO
1 CARD8 input class id
KEY
BUTTON
VALUATOR
FEEDBACK
PROXI M TY
FOCUS
OTHER
1 CARD8 event type base code for this class

OO, WNEO

Cl oseDevi ce
1 CARD8 input extension opcode
1 4 C oseDevice opcode

82

Input Extension Protocol Encoding

2 2 request length
1 CARD8 device id
3 unused

Set Devi ceMode

1 CARD8 input extension opcode
1 5 SetDeviceMde opcode

2 2 request length

1 CARD8 device id

1 CARD8 npde

2 unused

=>

11 Reply

15 Set Devi ceMbde opcode
2 CARD16 seqguence nunber
4 0 reply length

1 CARDS status

0 Success

1 Al readyG abbed

3 + first_error DeviceBusy
23 unused

Sel ect Ext ensi onEvent

1 CARD8 i nput extensi on opcode
16 Sel ect Ext ensi onEvent opcode
2 3+n request length

4 Wndow event w ndow

2 CARD16 count

2 unused

4n LI STof EVENTCLASS desired events

Get Sel ect edExt ensi onEvent s

1 CARD8 input extension opcode

1 7 GCetSel ect edExt ensi onEvents opcode
2 2 request length

4 Wndow event w ndow

=>
11 Reply

83

Input Extension Protocol Encoding

1 7 GetSel ect eExt ensi onEvents opcode
2 CARD16 sequence number

4 n+m reply length

2n this client count

2 m all clients count

20 unused

4n LI STof EVENTCLASS this client 1ist
4m LI STof EVENTCLASS all clients list

ChangeDevi ceDont Pr opagat eLi st
1 CARD8 i nput extensi on opcode
18 ChangeDevi ceDont Pr opagat eLi st opcode
2 3+n request length
W ndow event wi ndow
2n count of events
1 node
0 AddTolLi st
1 Del et eFronlLi st
1 unused
4n LI STof EVENTCLASS desired events

N

CGet Devi ceDont Pr opagat eLi st

1 CARD8 input extension opcode

1 9 GetDeviceDont Propagateli st opcode
2 2 request length

4 Wndow event w ndow

=>

11 Repl y

19 CGet Devi ceDont Propagat eLi st opcode
2 CARD16 sequence nunber

4 n reply length

2n count of events

22 unused

4n LI STof EVENTCLASS don't propagate |i st

Get Devi ceMbt i onEvent s
1 CARD8 input extension opcode
1 10 CetDeviceMtionEvents opcode
2 4 request length
4 TI MESTAMP start
0 CurrentTine
4 TI MESTAMP stop

Input Extension Protocol Encoding

O CurrentTine
1 CARD8 device id
3 unused

\Y

1 Reply
10 Get Devi ceMoti onEvents opcode
CARD16 sequence number
(mtl)n reply length
n nunber of DEVI CETI MECOORDs in events
m nunber of valuators per event
CARD8 node of the device
0 Absol ute
1 Rel ative
18 unused
(4m+4) n LI STof DEVI CETI MECOORD event s

RFRAANRBR

DEVI CETI MECOORD
4 TI MESTAMP tine
4m LI STof I NT32 val uators

ChangeKeyboar dDevi ce
1 CARD8 input extension opcode
1 11 ChangeKeyboar dDevi ce opcode
2 2 request length
1 CARD8 device id
3 unused

=>
11 Reply
1 11 ChangeKeyboar dDevi ce opcode
2 CARD16 sequence number
4 0 reply length
1 status
0 Success
1 Al readyG abbed
2 Devi ceFrozen
23 unused

ChangePoi nt er Devi ce

85

Input Extension Protocol Encoding

1 CARD8 input extension opcode
1 12 ChangePoi nt er Devi ce opcode
2 2 request length

1 CARD8 x-axis

1 CARD8 y-axis

1 CARD8 device id

1 unused

=>

11 Reply

1 12 ChangePoi nt er Devi ce opcode
2 CARD16 sequence number
4 0 reply length
1 status
0 Success
1 Al readyG abbed
2 Devi ceFrozen
23 unused

GrabDevi ce
1 CARD8 input extension opcode
1 13 G abDevice opcode
2 5+n request length
4 W NDOW grab-w ndow
4 TI MESTAMP tine
0O CurrentTime
2 n count of events
1 t hi s- devi ce- node
0 Synchronous
1 Asynchronous
1 ot her - devi ces- node
0 Synchronous
1 Asynchronous
1 BOOL owner-events
1 CARD8 device id
2 unused
4n LI STof EVENTCLASS event |i st

=>

11 Reply

1 13 G abDevice opcode
2 CARD16 sequence number
4 0 reply length

1 status

0 Success

86

Input Extension Protocol Encoding

1 Al readyG abbed
2 InvalidTine

3 Not Vi ewabl e

4 Frozen
23 unused

Ungr abDevi ce
1 CARD8 input extension opcode
1 14 UngrabDevi ce opcode
2 3 request length
4 TI MESTAMP tine
0 CurrentTine
1 CARD8 device id
3 unused

G abDevi ceKey

1 CARD8 input extension opcode
1 15 G abDevi ceKey opcode
2 5+n request length

W NDOW gr ab-wi ndow

n count of events

SETof KEYMASK nodi fiers
#x8000 AnyModi fi er
1 CARD8 nodifier device
#X0FF UseXKeyboard
1 CARD8 grabbed device
1 KEYCCDE key

0 AnyKey
1 t hi s- devi ce- node

0 Synchronous

1 Asynchronous

1 ot her - devi ces- node

0 Synchronous

1 Asynchronous

1 BOOL owner-events
2 unused
4n LI STof EVENTCLASS event |i st

N

2
2

Ungr abDevi ceKey

1 CARD8 input extension opcode
1 16 UngrabDevi ceKey opcode

2 4 request length

4 W NDOW grab-w ndow

2 SETof KEYMASK nodifiers
#x8000 AnyMbdi fi er

87

Input Extension Protocol Encoding

1 CARD8 nodifier device
#X0FF UseXKeyboard
1 KEYCCDE key

0 AnyKey
1 CARD8 grabbed device
3 unused

GrabDevi ceButt on

CARD8 i nput extension opcode
17 G abDevi ceButton opcode
5+n request length
W NDOW gr ab-wi ndow
1 CARD8 grabbed device
1 CARD8 nodifier device
#X0FF UseXKeyboard
2 n count of desired events
2 SETof KEYMASK nodifiers

1 t hi s- devi ce- node

0 Synchronous

1 Asynchronous

1 ot her - devi ce- node

0 Synchronous

1 Asynchronous

1 BUTTON button

0 AnyButton

1 BOOL owner-events

#x8000 AnyModi fi er

2 unused
4n LI STof EVENTCLASS event i st

ANR R

Ungr abDevi ceBut t on
1 CARD8 input extension opcode
1 18 UngrabDevi ceButton opcode
2 4 request length
4 W NDOW grab-w ndow
2 SETof KEYMASK nodifiers
#x8000 AnyModi fi er
1 CARD8 nodifier device
#X0FF UseXKeyboard
1 BUTTON button
0 AnyButton
1 CARD8 grabbed device
3 unused

88

Input Extension Protocol Encoding

Al | owDevi ceEvent s
1 CARD8 input extension opcode
1 19 Al owbeviceEvents opcode
2 3 request length
4 TI MESTAMP tine
0 CurrentTine
1 node
AsyncThi sDevi ce
SyncThi sDevi ce
Repl ayThi sDevi ce
AsyncQt her Devi ces
AsyncAl
SyncAl |
1 CARD8 device id
2 unused

abr~hwNPEFLO

Get Devi ceFocus

1 CARD8 input extension opcode
1 20 CetDevi ceFocus opcode

2 2 request length

1 CARD8 device

3 unused

=>
11 Reply
1 20 CetDevi ceFocus opcode
2 CARD16 sequence number
4 0 reply length
4 W NDOW focus
0 None
1 Poi nt er Root
3 Fol | owKeyboard
4 TI MESTAWP focus tinme
1 revert-to
0 None
1 Poi nt er Root
2 Parent
3 Fol | owKeyboard
15 unused

Set Devi ceFocus

1 CARD8 input extension opcode
1 21 SetDevi ceFocus opcode

2 4 request length

4 W NDOW focus

89

Input Extension Protocol Encoding

0 None

1 Poi nt er Root

3 Fol | owKeyboard
4 TI MESTAMP tine

O CurrentTine
1 revert-to

0 None

1 Poi nt er Root

2 Parent

3 Fol | owKeyboard
1 CARD8 device
2 unused

CGet FeedbackCont r ol

1 CARD8 input extension opcode
1 22 Cet FeedbackControl opcode
2 2 request length

1 CARD8 device id

3 unused

=>

11 Reply

1 22 Cet FeedbackControl opcode

2 CARD16 sequence number

4 m4 reply length

2 n nunber of feedbacks supported
22 unused

m LI STof FEEDBACKSTATE f eedbacks

FEEDBACKSTATE KBDFEEDBACKSTATE, PTRFEEDBACKSTATE, | NTEGERFEEDBACKSTATE
STRI NGFEEDBACKSTATE, BELLFEEDBACKSTATE, or LEDFEEDBACKSTATE

KBDFEEDBACKSTATE
1 0 feedback class id
1 CARD8 id of this feedback
2 20 length
2 CARD16 pitch
2 CARD16 duration
4 CARD32 | ed_nmsk
4 CARD32 | ed val ues
1 gl obal _aut o_r epeat
0 Of
1 On

90

Input Extension Protocol Encoding

1 CARD8 click

1 CARD8 percent

1 unused

32 LI STof CARD8 auto_repeats

PTRFEEDBACKSTATE
1 0 feedback class id
1 CARDB id of this feedback
2 12 length
2 unused
2 CARD16 accel eration-nunerator
2 CARD16 accel eration-denom nat or
2 CARD16 threshold

| NTEGERFEEDBACKSTATE
0 feedback class id
CARD8 id of this feedback
16 length
CARD32 resolution
INT32 m nimum val ue
I NT32 maxi mum val ue

A BRABANREFPR

STRI NGFEEDBACKSTATE
11 feedback class id
1 CARD8 id of this feedback
2 4n+8 length
2 CARD16 max_symnbol s
2n nunber of keysyns supported
4n LI STof KEYSYM key synbol s supported

BELLFEEDBACKSTATE
1 feedback class id
CARD8 id of this feedback
12 length
CARD8 percent
unused
CARD16 pitch
CARD16 duration

NNWEFENRE P

LEDFEEDBACKSTATE

91

Input Extension Protocol Encoding

11 feedback class id

1 CARDB id of this feedback
2 12 length

4 CARD32 | ed_nask

4 BITMASK | ed _val ues

#x0001 On

#x0002 O f

ChangeFeedbackCont r ol
1 CARD8 input extension opcode
1 23 ChangeFeedbackControl opcode
2 3+n/4 request |length
4 BI TMASK val ue-mask (has n bits set to 1)
#x0001 keyclick- percent
#x0002 bel | - per cent
#x0004 bell -pitch
#x0008 bel | -duration
#x0010 | ed
#x0020 | ed- node
#x0040 key
#x0080 aut o-r epeat - node
#x0001 string
#x0001 i nt eger
#x0001 accel erati on-numer at or
#x0002 accel erati on-denom nat or
#x0004 accel eration-threshol d
1 CARD8 device id
1 CARD8 feedback class id
2 unused
n FEEDBACKCLASS

FEEDBACKCLASS KBDFEEDBACKCTL, PTRFEEDBACKCTL, | NTEGERFEEDBACKCTL
STRI NGFEEDBACKCTL, BELLFEEDBACKCTL, or LEDFEEDBACKCTL

KBDFEEDBACKCTL
0 feedback class id
CARD8 id of this feedback
20 length
KEYCODE key
aut o- r epeat - node
0 Of
1 On
2 Default
1 INT8 key-click-percent
1 INT8 bell-percent

PR NP R

92

Input Extension Protocol Encoding

2 INT16 bell-pitch

2 INT16 bell-duration
4 CARD32 | ed_nask

4 CARD32 | ed val ues

PTRFEEDBACKCTL

1 feedback class id

CARD8 id of this feedback
12 length

unused

I NT16 numerator

I NT16 denom nat or

INT16 threshold

NNNNNRE P

STRI NGCTL
1 2 feedback class id
1 CARD8 id of this feedback
2 4n+8 length
2 unused
2 n nunber of keysyns to display
4n LI STof KEYSYM [|ist of key synmbols to display

| NTEGERCTL
1 3 feedback class id
1 CARDB id of this feedback
2 8 length
4 | NT32 integer to display

LEDCTL

1 4 feedback class id

1 CARDB id of this feedback
2 12 length
4 CARD32 | ed_nmsk
4 BITMASK | ed val ues

#x0001 On

#x0002 O f

BELLCTL
15 feedback class id
1 CARD8 id of this feedback

93

Input Extension Protocol Encoding

8 length

I NT8 percent
unused

INT16 pitch

I NT16 duration

NNWEDN

CGet Devi ceKeyMappi ng
1 CARD8 input extension opcode
1 24 CetDevi ceKeyMappi ng opcode
2 2 request length

1 CARD8 device

1 KEYCODE first-keycode

1 CARD8 count

1 unused

=>

11 Reply

1 24 CetDevi ceKeyMappi ng opcode

2 CARD16 sequence number

4 nm reply length (m= count field fromthe request)
1 n keysyns-per-keycode

23 unused

4nm LI STof KEYSYM keysyns

ChangeDevi ceKeyMappi ng
1 CARD8 input extension opcode
1 25 ChangeDevi ceKeyMappi ng opcode
2 2+nm request length
1 CARD8 device
1 KEYCODE first-keycode
1 m keysyns-per-keycode
1 n keycode-count
4nm LI STof KEYSYM keysyns

CGet Devi ceMbdi fi er Mappi ng

1 CARD8 input extension opcode

1 26 CetDeviceMdifierMppi ng opcode
2 2 request length

1 CARD8 device

3 unused

94

Input Extension Protocol Encoding

=>

11 Reply

1 26 CetDeviceMdifierMppi ng opcode
2 CARD16 sequence number

4 2n reply length

1 n keycodes-per-nodifier

23 unused

8n LI STof KEYCODE keycodes

Set Devi ceModi fi er Mappi ng

1 CARD8 input extension opcode
1 27 SetDeviceMdifier opcode
2 2+2n request |length

1 CARD8 device

1 n keycodes-per-nodifier

2 unused
8n LI STof KEYCODE keycodes

=>
11 Reply
1 27 SetDeviceMdifierMappi ng opcode
2 CARD16 sequence number
4 0 reply length
1 status
0 Success
1 Busy
2 Failed
23 unused

Get Devi ceBut t onMappi ng

1 CARD8 input extension opcode

1 28 CetDevi ceButtonMappi ng opcode
2 2 request length

1 CARD8 device

3 unused

=>

11 Reply

1 28 CetDevi ceButtonMappi ng opcode
2 CARD16 sequence number

4 (n+p)/4 reply length

1 n nunber of elenents in map |i st

95

Input Extension Protocol Encoding

23 unused
n LI STof CARDS map
p unused, p=pad(n)

Set Devi ceBut t onMappi ng

1 CARD8 input extension opcode

1 29 SetDevi ceButtonMappi ng opcode
2 2+(n+p)/4 request length

1 CARD8 device

1 n length of map

2 unused

n LI STof CARDS map

p unused, p=pad(n)

=>
11 Reply
1 29 SetDevi ceButtonMappi ng opcode
2 CARD16 sequence number
4 0 reply length
1 status
0 Success
1 Busy
23 unused

QueryDevi ceSt ate

1 CARD8 input extension opcode
1 30 QueryDeviceState opcode

2 2 request length

1 CARD8 device

3 unused

=>

11 Reply

1 30 QueryDevi ceSt at e opcode

2 CARD16 seqguence nunber

4 m4 reply length

1n nunber of input classes
23 unused

m LI STof | NPUTSTATE

96

Input Extension Protocol Encoding

| NPUTSTATE KEYSTATE or BUTTONSTATE or VALUATORSTATE

KEYSTATE

1 CARD8 key input class id

1 36 length

1 CARD8 num keys

1 unused

32 LI STof CARD8 status of keys

BUTTONSTATE
1 CARD8 button input class id
1 36 length
1 CARD8 num buttons
1 unused
32 LI STof CARD8 status of buttons

VALUATORSTATE

1 CARD8 valuator input class id

14n + 4 length

1 n nunber of valuators

1 node

#x01 Devi ceMbde (0 = Relative, 1 = Absol ute)

#x02 ProximtyState (0 = InProximty, 1 = QutOFProximty)
4n LI STof CARD32 status of valuators

SendExt ensi onEvent

1 CARD8 i nput extensi on opcode
131 SendExt ensi onEvent opcode
24 +8n + m request |length

4 WNDOW destination
CARDB devi ce

BOOL propagat e

CARD16 event cl ass count
CARD8 num events

3 unused

32n LI STof EVENTS events to send
4m LI STof EVENTCLASS desired events

RPN R R

Devi ceBel
1 CARD8 input extension opcode

97

Input Extension Protocol Encoding

32 DeviceBell opcode
2 request length
CARD8 device id
CARD8 feedback id
CARD8 feedback cl ass
I NT8 percent

PR R RN

Set Devi ceVal uat ors

1 CARD8 input extension opcode

1 33 SetDeviceVal uators opcode

2 2+ n request length

1 CARD8 device id

1 CARD8 first valuator

1n nunber of valuators

1 unused
4n LI STof I NT32 val uator val ues to set

=>
11 Reply
1 33 Set Devi ceVal uat ors opcode
2 CARD16 seqguence nunber
4 0 reply length
1 CARDS status
0 Success
1 Al readyG abbed
23 unused

Cet Devi ceCont r ol

1 CARD8 input extension opcode
1 34 CetDeviceControl opcode

2 2 request length

2 CARD16 device control type

1 CARD8 device id

1 unused

=>

11 Reply

1 34 CGet Devi ceCont rol opcode
2 CARD16 seqguence nunber
4 nl4 reply length
1 CARDS status
0 Success
1 Al readyG abbed

98

Input Extension Protocol Encoding

3 + first_error DeviceBusy
23 unused
n DEVI CESTATE

DEVI CESTATE DEVI CERESOLUTI ONSTATE

DEVI CERESOLUTI ONSTATE
2 0 control type
2 8 + 12n length
4 n num val uators
4n LI STOF CARD32 resol ution val ues
4n LI STOF CARD32 resol ution m n_val ues
4n LI STOF CARD32 resol uti on nax_val ues

ChangeDevi ceCont r ol

1 CARD8 input extension opcode
35 ChangeDevi ceControl opcode
2+n/ 4 request length
CARD16 control type
CARD8 device id

unused

DEVI CECONTROL

S FPFEFPDNDNPE

DEVI CECONTROL DEVI CERESOLUTI ONCTL

DEVI CERESOLUTI ONCTL
2 1 control type
2 8 +4n length
1 CARD8 first_valuator
1n num val uat or s
2 unused
4n LI STOF CARD32 resol ution val ues

=>
11 Reply
135 ChangeDevi ceCont rol opcode

99

Input Extension Protocol Encoding

2 CARD16 seqguence nunber
4 0 reply length
1 CARDS status
0 Success
1 Al readyG abbed
3 + first_error DeviceBusy
23 unused

Events

DeviceK eyPress, DeviceK eyRelease, DeviceButtonPress, DeviceButtonRelease, Proximityln, Proximity-
Out, and DeviceStateNotify events may be followed by zero or more DeviceVauator events. DeviceMo-
tionNotify events will be followed by one or more DeviceVauator events.

Devi ceVal uat or

1 CARD8 code

1 CARD8 device id

2 CARD16 sequence number

2 SETof KEYBUTMASK state

1 n nunber of valuators this device reports
1 m nunber of first valuator in this event
24 LI STof | NT32 val uators

Devi ceKeyPr ess

CARD8 code

KEYCODE det ai l

CARD16 sequence number
TI MESTAMP tine

W NDOW r oot

W NDOW event

W NDOW child

0 None

INT16 root-x

I NT16 root-y

I NT16 event-x

I NT16 event-y

SETof KEYBUTMASK st ate
BOOL sane-screen
CARD8 device id

#x80 MORE_EVENTS fol | ow

N N N L S

P EPDNNNDNDN

Devi ceKeyRel ease

1 CARD8 code

1 KEYCODE detail

2 CARD16 sequence number
4 TI MESTAMP tine

100

Input Extension Protocol Encoding

4 W NDOW r oot
4 W NDOW event
4 WNDOW child
0 None
INT16 root-x
I NT16 root-y
I NT16 event-x
I NT16 event-y
SETof KEYBUTMASK state
BOOL sane-screen
CARD8 device id
#x80 MORE_EVENTS fol | ow

P EPDNNNDNDN

Devi ceBut t onPr ess
CARD8 code
BUTTON detai l
CARD16 sequence numnber
TI MESTAMP tine
W NDOW r oot
W NDOW event
W NDOW child
0 None
INT16 root-x
I NT16 root-y
I NT16 event-x
I NT16 event-y
SETof KEYBUTMASK st ate
BOOL sane-screen
CARD8 device id
#x80 MORE_EVENTS fol | ow

N N N L S

P EPDNNNDNDN

Devi ceBut t onRel ease
CARD8 code
BUTTON detai l
CARD16 sequence number
TI MESTAMP tine
W NDOW r oot
W NDOW event
W NDOW child
0 None
INT16 root-x
I NT16 root-y
I NT16 event-x
I NT16 event-y
SETof KEYBUTMASK st ate
BOOL sane-screen
CARD8 device id
#x80 MORE_EVENTS fol | ow

N N N L S

P EPDNNNDNDN

101

Input Extension Protocol Encoding

Devi ceMot i onNoti fy
1 CARD8 code
1 det ai |
0 Nor nmal
1 Hint
CARD16 sequence numnber
TI MESTAMP tine
W NDOW r oot
W NDOW event
W NDOW child
0 None
INT16 root-x
I NT16 root-y
I NT16 event-x
I NT16 event-y
SETof KEYBUTMASK st ate
BOOL sane-screen
CARD8 device id
#x80 MORE_EVENTS fol | ow

ArBASADDN

P EPDNNNDNDN

Devi ceFocusln

1 CARD8 code

1 det ai |
Ancest or
Vi rtual

I nferior

Nonl i near
Nonl i near Vi rt ual
Poi nt er
Poi nt er Root
None
2 CARD16 sequence number
4 TI MESTAMP tine
4 W NDOW event
1 node

0 Nor nmal

1 Gab

2 Ungrab

3 Wi | eGrabbed
1 CARD8 device id
18 unused

No oh~ WNEO

Devi ceFocusCQut
1 CARD8 code
1 det ai |

102

Input Extension Protocol Encoding

Ancest or
Vi rtual
I nferior
Nonl i near
Nonl i near Vi rt ual
Poi nt er
Poi nt er Root
None
2 CARD16 sequence number
4 TI MESTAMP tine
4 W NDOW event
1 node
0 Nor nmal
1 Gab
2 Ungrab
3 Wi | eGrabbed
1 CARD8 device id
18 unused

No o h~ WNEO

Proximtyln

CARD8 code

unused

CARD16 sequence numnber
TI MESTAMP tine

W NDOW r oot

W NDOW event

W NDOW child

0 None

INT16 root-x

I NT16 root-y

I NT16 event-x

I NT16 event-y

SETof KEYBUTMASK state
BOOL sane-screen

CARD8 device id
#x80 MORE_EVENTS fol | ow

N N N L S

P EPDNNNDNDN

Pr oxi m t yQut

CARD8 code
unused

CARD16 sequence numnber

TI MESTAMP tine

W NDOW r oot

W NDOW event

W NDOW child

0 None

2 INT16 root-x

2 INT16 root-y

N N N L S

103

Input Extension Protocol Encoding

I NT16 event-x
I NT16 event-y
SETof KEYBUTMASK state
BOOL sane-screen
CARD8 device id
#x80 MORE_EVENTS fol | ow

P FEPDNNDN

DeviceStateNotify events may be immediately followed by zero or one DeviceKeyStateNotify and/ or
zero or more DeviceValuator events.

Devi ceStateNotify
1 CARD8 code
1 CARD8 device id
#x80 MORE_EVENTS fol | ow
2 CARD16 sequence number
4 TI MESTAMP tine
1 CARD8 num keys
1 CARD8 num buttons
1 CARD8 numval uators
1 CARD8 valuator nobde and input classes reported
#x01 reporting keys
#x02 reporting buttons
#x04 reporting valuators
#x40 device node (0 = Relative, 1 = Absolute)
#x80 proximty state (0O = InProximty, 1 = QutCOfProximty)
4 LI STof CARD8 first 32 keys (if reported)
4 LI STof CARD8 first 32 buttons (if reported)
12 LI STof CARD32 first 3 valuators (if reported)

Devi ceKeySt at eNot i fy
1 CARD8 code
1 CARD8 device id
#x80 MORE_EVENTS fol | ow
2 CARD16 sequence number
28 LI STof CARD8 state of keys 33-255

Devi ceBut t onSt at eNot i fy
1 CARD8 code
1 CARD8 device id
#x80 MORE_EVENTS fol | ow
2 CARD16 sequence number
28 LI STof CARD8 state of buttons 33-255

104

Input Extension Protocol Encoding

Devi ceVal uat or

1 CARD8 code

1 CARD8 device id
2 CARD16 sequence number
2 SETof KEYBUTMASK state

1 n nunber of valuators this device reports
1 n nunber of first valuator in this event
24 LI STof | NT32 val uators

Devi ceMappi ngNot i fy
1 CARD8 code
1 CARD8 device id
2 CARD16 sequence nunber
1 request
0 Mappi nghbdi fi er
1 Mappi ngKeyboard
2 Mappi ngPoi nt er
1 KEYCODE first-keycode
1 CARD8 count
1 unused
4 TI MESTAMP tinme
20 unused

ChangeDevi ceNoti fy
1 CARD8 code

1 CARD8 id of device specified on change request

2 CARD16 sequence number
4 TI MESTAMP tinme
1 request
0 NewPoi nt er
1 NewKeyboard
23 unused

105

	X Input Device Extension Library
	Table of Contents
	Chapter 1. Input Extension
	Overview
	Design Approach
	Core Input Devices
	Extension Input Devices
	Input Device Classes

	Using Extension Input Devices

	Library Extension Requests
	Window Manager Functions
	Changing the Core Devices
	Event Synchronization and Core Grabs
	Extension Active Grabs
	Passively Grabbing a Key
	Passively Grabbing a Button
	Thawing a Device
	Controlling Device Focus
	Controlling Device Feedback
	Ringing a Bell on an Input Device
	Controlling Device Encoding
	Controlling Button Mapping
	Obtaining the State of a Device

	Events
	Event Types
	Event Classes
	Event Structures
	Device Key Events
	Device Button Events
	Device Motion Events
	Device Focus Events
	Device StateNotify Event
	Device Mapping Event
	ChangeDeviceNotify Event
	Proximity Events

	Event Handling Functions
	Determining the Extension Version
	Listing Available Devices
	Enabling and Disabling Extension Devices
	Changing the Mode of a Device
	Initializing Valuators on an Input Device
	Getting Input Device Controls
	Changing Input Device Controls
	Selecting Extension Device Events
	Determining Selected Device Events
	Controlling Event Propagation
	Sending an Event
	Getting Motion History

	Appendix A. Input Extension Protocol Encoding

