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Abstract

UMFPACK is a set of routines for solving unsymmetric sparse linear systems, Ax = b,
using the Unsymmetric MultiFrontal method and direct sparse LU factorization. It is written in
ANSI/ISO C, with a MATLAB interface. UMFPACK relies on the Level-3 Basic Linear Algebra
Subprograms (dense matrix multiply) for its performance. This code works on Windows and
many versions of Unix (Sun Solaris, Red Hat Linux, IBM AIX, SGI IRIX, and Compaq Alpha).
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1 Overview

UMFPACK1 is a set of routines for solving systems of linear equations, Ax = b, when A is sparse
and unsymmetric. It is based on the Unsymmetric-pattern MultiFrontal method [6, 7]. UMFPACK
factorizes PAQ, PRAQ, or PR−1AQ into the product LU, where L and U are lower and upper
triangular, respectively, P and Q are permutation matrices, and R is a diagonal matrix of row
scaling factors (or R = I if row-scaling is not used). Both P and Q are chosen to reduce fill-in (new
nonzeros in L and U that are not present in A). The permutation P has the dual role of reducing
fill-in and maintaining numerical accuracy (via relaxed partial pivoting and row interchanges).

The sparse matrix A can be square or rectangular, singular or non-singular, and real or complex
(or any combination). Only square matrices A can be used to solve Ax = b or related systems.
Rectangular matrices can only be factorized.

UMFPACK first finds a column pre-ordering that reduces fill-in, without regard to numerical
values. It scales and analyzes the matrix, and then automatically selects one of two strategies for
pre-ordering the rows and columns: unsymmetric and symmetric. These strategies are described
below.

First, all pivots with zero Markowitz cost are eliminated and placed in the LU factors. The
remaining submatrix S is then analyzed. The following rules are applied, and the first one that
matches defines the strategy.

• Rule 1: A rectangular → unsymmetric.

• Rule 2: If the zero-Markowitz elimination results in a rectangular S, or an S whose diagonal
has not been preserved, the unsymmetric strategy is used.

• The symmetry σ1 of S is computed. It is defined as the number of matched off-diagonal
entries, divided by the total number of off-diagonal entries. An entry sij is matched if sji is
also an entry. They need not be numerically equal. An entry is a value in A which is present
in the input data structure. All nonzeros are entries, but some entries may be numerically
zero. Let d be the number of nonzero entries on the diagonal of S. Let S be ν-by-ν. Rule 3:
(σ1 ≥ 0.5) ∧ (d ≥ 0.9ν) → symmetric. The matrix has a nearly symmetric nonzero pattern
(50% or more), and a mostly-zero-free diagonal (90% or more nonzero).

• Rule 4: Otherwise, the unsymmetric strategy is used.

Each strategy is described below:

• unsymmetric: The column pre-ordering of S is computed by a modified version of COLAMD
[8, 9]. The method finds a symmetric permutation Q of the matrix STS (without forming STS
explicitly). This is a good choice for Q, since the Cholesky factors of (SQ)T(SQ) are an upper
bound (in terms of nonzero pattern) of the factor U for the unsymmetric LU factorization
(PSQ = LU) regardless of the choice of P [19, 20, 22]. This modified version of COLAMD
also computes the column elimination tree and post-orders the tree. It finds the upper bound
on the number of nonzeros in L and U. It also has a different threshold for determining dense
rows and columns. During factorization, the column pre-ordering can be modified. Columns
within a single super-column can be reshuffled, to reduce fill-in. Threshold partial pivoting

1Pronounced with two syllables: umph-pack
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is used with no preference given to the diagonal entry. Within a given pivot column j, an
entry aij can be chosen if |aij | ≥ 0.1 max |a∗j |. Among those numerically acceptable entries,
the sparsest row i is chosen as the pivot row.

• symmetric: The column ordering is computed from AMD [1, 2], applied to the pattern of S+
ST followed by a post-ordering of the supernodal elimination tree of S+ST. No modification
of the column pre-ordering is made during numerical factorization. Threshold partial pivoting
is used, with a strong preference given to the diagonal entry. The diagonal entry is chosen
if ajj ≥ 0.001 max |a∗j |. Otherwise, a sparse row is selected, using the same method used by
the unsymmetric strategy.

The symmetric strategy, and their automatic selection, are new to Version 4.1. Version 4.0 only
used the unsymmetric strategy. Versions 4.1 through 5.3 included a 2-by-2 ordering strategy, but
this option has been disabled in Version 5.4.

Once the strategy is selected, the factorization of the matrix A is broken down into the fac-
torization of a sequence of dense rectangular frontal matrices. The frontal matrices are related
to each other by a supernodal column elimination tree, in which each node in the tree represents
one frontal matrix. This analysis phase also determines upper bounds on the memory usage, the
floating-point operation count, and the number of nonzeros in the LU factors.

UMFPACK factorizes each chain of frontal matrices in a single working array, similar to how
the unifrontal method [18] factorizes the whole matrix. A chain of frontal matrices is a sequence
of fronts where the parent of front i is i+1 in the supernodal column elimination tree. For the
nonsingular matrices factorized with the unsymmetric strategy, there are exactly the same number
of chains as there are leaves in the supernodal column elimination tree. UMFPACK is an outer-
product based, right-looking method. At the k-th step of Gaussian elimination, it represents the
updated submatrix Ak as an implicit summation of a set of dense sub-matrices (referred to as
elements, borrowing a phrase from finite-element methods) that arise when the frontal matrices are
factorized and their pivot rows and columns eliminated.

Each frontal matrix represents the elimination of one or more columns; each column of A will
be eliminated in a specific frontal matrix, and which frontal matrix will be used for which column
is determined by the pre-analysis phase. The pre-analysis phase also determines the worst-case size
of each frontal matrix so that they can hold any candidate pivot column and any candidate pivot
row. From the perspective of the analysis phase, any candidate pivot column in the frontal matrix
is identical (in terms of nonzero pattern), and so is any row. However, the numeric factorization
phase has more information than the analysis phase. It uses this information to reorder the columns
within each frontal matrix to reduce fill-in. Similarly, since the number of nonzeros in each row and
column are maintained (more precisely, COLMMD-style approximate degrees [21]), a pivot row can
be selected based on sparsity-preserving criteria (low degree) as well as numerical considerations
(relaxed threshold partial pivoting).

When the symmetric strategy are used, the column preordering is not refined during numeric
factorization. Row pivoting for sparsity and numerical accuracy is performed if the diagonal entry
is too small.

More details of the method, including experimental results, are described in [5, 4], available at
http://www.suitesparse.com.
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2 Availability

In addition to appearing as a Collected Algorithm of the ACM, UMFPACK is available at
http://www.suitesparse.com. It is included as a built-in routine in MATLAB. Version 4.0 (in
MATLAB 6.5) does not have the symmetric strategy and it takes less advantage of the level-3 BLAS
[11, 12, 27, 25]. Versions 5.x through v4.1 tend to be much faster than Version 4.0, particularly on
unsymmetric matrices with mostly symmetric nonzero pattern (such as finite element and circuit
simulation matrices). Version 3.0 and following make use of a modified version of COLAMD V2.0 by
Timothy A. Davis, Stefan Larimore, John Gilbert, and Esmond Ng. The original COLAMD V2.1 is
available in as a built-in routine in MATLAB V6.0 (or later), and at http://www.suitesparse.com.
These codes are also available in Netlib [13] at http://www.netlib.org. UMFPACK Versions 2.2.1
and earlier, co-authored with Iain Duff, are available as MA38 (functionally equivalent to Version
2.2.1) in the Harwell Subroutine Library.

NOTE: you must use the correct version of AMD with UMFPACK; using an old
version of AMD with a newer version of UMFPACK can fail.

3 Primary changes from prior versions

A detailed list of changes is in the ChangeLog file.

3.1 Version 5.6.0

Replaced UFconfig with SuiteSparse config, for SuiteSparse timer. The UF long type is re-
placed with SuiteSparse long to avoid potential name conflicts with the UF prefix, but the for-
mer is still available for user programs. User programs may safely #undef the UF long macro
and use SuiteSparse long instead. In future versions, UF long will be removed completely from
SuiteSparse config.h.

3.2 Version 5.5.0

Added more user ordering options (interface to CHOLMOD and METIS orderings, and the ability
to pass in a user ordering function). Minor change to how the 64-bit BLAS is used. Added an
option to disable the search for singletons.

3.3 Version 5.4.0

Disabled the 2-by-2 ordering strategy. Bug fix for umfpack_make.m for Windows.

3.4 Version 5.3.0

A bug fix for structurally singular matrices, and a compiler workaround for gcc versions 4.2.(3 and
4).

3.5 Version 5.2.0

Change of license from GNU Lesser GPL to the GNU GPL.

7



3.6 Version 5.1.0

Port of MATLAB interface to 64-bit MATLAB.

3.7 Version 5.0.3

Renamed the MATLAB function to umfpack2, so as not to confict with itself (the MATLAB built-in
version of UMFPACK).

3.8 Version 5.0

Changed long to UF long, controlled by the UFconfig.h file. A UF long is normally just long,
except on the Windows 64 (WIN64) platform. In that case, it becomes int64.

3.9 Version 4.6

Added additional options to umf solve.c.

3.10 Version 4.5

Added function pointers for malloc, calloc, realloc, free, printf, hypot, and complex divisiion, so
that these functions can be redefined at run-time. Added a version number so you can determine
the version of UMFPACK at run time or compile time. UMFPACK requires AMD v2.0 or later.

3.11 Version 4.4

Bug fix in strategy selection in umfpack * qsymbolic. Added packed complex case for all complex
input/output arguments. Added umfpack get determinant. Added minimal support for Microsoft
Visual Studio (the umf multicompile.c file).

3.12 Version 4.3.1

Minor bug fix in the forward/backsolve. This bug had the effect of turning off iterative refinement
when solving ATx = b after factorizing A. UMFPACK mexFunction now factorizes AT in its
forward-slash operation.

3.13 Version 4.3

No changes are visible to the C or MATLAB user, except the presence of one new control parameter
in the Control array, and three new statistics in the Info array. The primary change is the addition
of an (optional) drop tolerance.

3.14 Version 4.1

The following is a summary of the main changes that are visible to the C or MATLAB user:

1. New ordering strategies added. No changes are required in user code (either C or MATLAB) to
use the new default strategy, which is an automatic selection of the unsymmetric, symmetric,
or 2-by-2 strategies.
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2. Row scaling added. This is only visible to the MATLAB caller when using the form [L,U,P,Q,R]

= umfpack (A), to retrieve the LU factors. Likewise, it is only visible to the C caller when
the LU factors are retrieved, or when solving systems with just L or U. New C-callable and
MATLAB-callable routines are included to get and to apply the scale factors computed by
UMFPACK. Row scaling is enabled by default, but can be disabled. Row scaling usually
leads to a better factorization, particularly when the symmetric strategy is used.

3. Error code UMFPACK ERROR problem to large removed. Version 4.0 would generate this error
when the upper bound memory usage exceeded 2GB (for the int version), even when the
actual memory usage was less than this. The new version properly handles this case, and can
successfully factorize the matrix if sufficient memory is available.

4. New control parameters and statistics provided.

5. The AMD symmetric approximate minimum degree ordering routine added [1, 2]. It is used
by UMFPACK, and can also be called independently from C or MATLAB.

6. The umfpack mexFunction now returns permutation matrices, not permutation vectors, when
using the form [L,U,P,Q] = umfpack (A) or the new form [L,U,P,Q,R] = umfpack (A).

7. New arguments added to the user-callable routines umfpack * symbolic, umfpack * qsymbolic,
umfpack * get numeric, and umfpack * get symbolic. The symbolic analysis now makes
use of the numerical values of the matrix A, to guide the 2-by-2 strategy. The subsequent
matrix passed to the numeric factorization step does not have to have the same numerical
values. All of the new arguments are optional. If you do not wish to include them, simply
pass NULL pointers instead. The 2-by-2 strategy will assume all entries are numerically large,
for example.

8. New routines added to save and load the Numeric and Symbolic objects to and from a binary
file.

9. A Fortran interface added. It provides access to a subset of UMFPACK’s features.

10. You can compute an incomplete LU factorization, by dropping small entries from L and U.
By default, no nonzero entry is dropped, no matter how small in absolute value. This feature
is new to Version 4.3.

4 Using UMFPACK in MATLAB

The easiest way to use UMFPACK is within MATLAB. Version 4.3 is a built-in routine in MATLAB
7.0.4, and is used in x = A\b when A is sparse, square, unsymmetric (or symmetric but not positive
definite), and with nonzero entries that are not confined in a narrow band. It is also used for the
[L,U,P,Q] = lu (A) usage of lu. Type help lu in MATLAB 6.5 or later for more details.

To compile both the UMFPACK and AMD mexFunctions, just type umfpack make in MATLAB,
while in the UMFPACK/MATLAB directory.

See Section 8 for more details on how to install UMFPACK. Once installed, the UMFPACK
mexFunction can analyze, factor, and solve linear systems. Table 1 summarizes some of the more
common uses of the UMFPACK mexFunction within MATLAB.
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Table 1: Using UMFPACK’s MATLAB interface

Function Using UMFPACK MATLAB 6.0 equivalent

Solve Ax = b. x = umfpack (A,’\’,b) ; x = A \ b ;

Solve Ax = b using a dif-
ferent row and column pre-
ordering (symmetric strat-
egy).

S = spones (A) ;

Q = symamd (S+S’) ;

Control = umfpack ;

Control.strategy = ’symmetric’ ;

x = umfpack (A,Q,’\’,b,Control) ;

spparms (’autommd’,0) ;

S = spones (A) ;

Q = symamd (S+S’) ;

x = A (Q,Q) \ b (Q) ;

x (Q) = x ;

spparms (’autommd’,1) ;

Solve ATxT = bT. x = umfpack (b,’/’,A) ;

Note: A is factorized.

x = b / A ;

Note: AT is factorized.

Scale and factorize A, then
solve Ax = b.

[L,U,P,Q,R] = umfpack (A) ;

c = P * (R \ b) ;

x = Q * (U \ (L \ c)) ;

[m n] = size (A) ;

r = full (sum (abs (A), 2)) ;

r (find (r == 0)) = 1 ;

R = spdiags (r, 0, m, m) ;

I = speye (n) ;

Q = I (:, colamd (A)) ;

[L,U,P] = lu ((R\A)*Q) ;

c = P * (R \ b) ;

x = Q * (U \ (L \ c)) ;

An optional input argument can be used to modify the control parameters for UMFPACK, and
an optional output argument provides statistics on the factorization.

Refer to the AMD User Guide for more details about the AMD mexFunction.
Note: in MATLAB 6.5 or later, use spparms (’autoamd’,0) in addition to spparms (’autommd’,0),

in Table 1, to turn off MATLAB’s default reordering.
UMFPACK requires b to be a dense vector (real or complex) of the appropriate dimension.

This is more restrictive than what you can do with MATLAB’s backslash or forward slash. See
umfpack solve for an M-file that removes this restriction. This restriction does not apply to the
built-in backslash operator in MATLAB 6.5 or later, which uses UMFPACK to factorize the matrix.
You can do this yourself in MATLAB:

[L,U,P,Q,R] = umfpack (A) ;

x = Q * (U \ (L \ (P * (R \ b)))) ;

or, with no row scaling:

[L,U,P,Q] = umfpack (A) ;

x = Q * (U \ (L \ (P * b))) ;

The above examples do not make use of the iterative refinement that is built into x = umfpack

(A,’\’,b) however.
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MATLAB’s [L,U,P] = lu(A) returns a lower triangular L, an upper triangular U, and a per-
mutation matrix P such that P*A is equal to L*U. UMFPACK behaves differently. By default, it
scales the rows of A and reorders the columns of A prior to factorization, so that L*U is equal to
P*(R\A)*Q, where R is a diagonal sparse matrix of scale factors for the rows of A. The scale factors
R are applied to A via the MATLAB expression R\A to avoid multiplying by the reciprocal, which
can be numerically inaccurate.

There are more options; you can provide your own column pre-ordering (in which case UMF-
PACK does not call COLAMD or AMD), you can modify other control settings (similar to the
spparms in MATLAB), and you can get various statistics on the analysis, factorization, and solution
of the linear system. Type umfpack details and umfpack report in MATLAB for more informa-
tion. Two demo M-files are provided. Just type umfpack simple and umfpack demo to run them.
The output of these two programs should be about the same as the files umfpack simple.m.out

and umfpack demo.m.out that are provided.
Factorizing A’ (or A.’) and using the transposed factors can sometimes be faster than factorizing

A. It can also be preferable to factorize A’ if A is rectangular. UMFPACK pre-orders the columns
to maintain sparsity; the row ordering is not determined until the matrix is factorized. Thus, if A is
m by n with structural rank m and m < n, then umfpack might not find a factor U with a structurally
zero-free diagonal. Unless the matrix ill-conditioned or poorly scaled, factorizing A’ in this case
will guarantee that both factors will have zero-free diagonals (in the structural sense; they may
be numerically zero). Note that there is no guarantee as to the size of the diagonal entries of U;
UMFPACK does not do a rank-revealing factorization. Here’s how you can factorize A’ and get
the factors of A instead:

[l,u,p,q] = umfpack (A’) ;

L = u’ ;

U = l’ ;

P = q ;

Q = p ;

clear l u p q

This is an alternative to [L,U,P,Q]=umfpack(A).
A simple M-file (umfpack btf) is provided that first permutes the matrix to upper block trian-

gular form, using MATLAB’s dmperm routine, and then solves each block. The LU factors are not
returned. Its usage is simple: x = umfpack btf(A,b). Type help umfpack btf for more options.
An estimate of the 1-norm of L*U-P*A*Q can be computed in MATLAB as lu normest(P*A*Q,L,U),
using the lu normest.m M-file by Hager and Davis [10] that is included with the UMFPACK dis-
tribution. With row scaling enabled, use lu normest(P*(R\A)*Q,L,U) instead.

One issue you may encounter is how UMFPACK allocates its memory when being used in
a mexFunction. One part of its working space is of variable size. The symbolic analysis phase
determines an upper bound on the size of this memory, but not all of this memory will typically
be used in the numerical factorization. UMFPACK tries to allocate a decent amount of working
space. This is 70% of the upper bound, by default, for the unsymmetric strategy. For the symmetric
strategy, the fraction of the upper bound is computed automatically (assuming a best-case scenario
with no numerical pivoting required during numeric factorization). If this initial allocation fails, it
reduces its request and uses less memory. If the space is not large enough during factorization, it
is increased via mxRealloc.
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However, mxMalloc and mxRealloc abort the umfpack mexFunction if they fail, so this strategy
does not work in MATLAB.

To compute the determinant with UMFPACK:

d = umfpack (A, ’det’) ;

[d e] = umfpack (A, ’det’) ;

The first case is identical to MATLAB’s det. The second case returns the determinant in the
form d× 10e, which avoids overflow if e is large.

5 Using UMFPACK in a C program

The C-callable UMFPACK library consists of 32 user-callable routines and one include file. All but
three of the routines come in four versions, with different sizes of integers and for real or complex
floating-point numbers:

1. umfpack di *: real double precision, int integers.

2. umfpack dl *: real double precision, SuiteSparse long integers.

3. umfpack zi *: complex double precision, int integers.

4. umfpack zl *: complex double precision, SuiteSparse long integers.

where * denotes the specific name of one of the routines. Routine names beginning with umf are
internal to the package, and should not be called by the user. The include file umfpack.h must
be included in any C program that uses UMFPACK. The other three routines are the same for all
four versions.

In addition, the C-callable AMD library distributed with UMFPACK includes 4 user-callable
routines (in two versions with int and SuiteSparse long integers) and one include file. Refer to
the AMD documentation for more details.

Use only one version for any one problem; do not attempt to use one version to analyze the
matrix and another version to factorize the matrix, for example.

The notation umfpack di * refers to all user-callable routines for the real double precision
and int integer case. The notation umfpack * numeric, for example, refers all four versions
(real/complex, int/SuiteSparse long) of a single operation (in this case numeric factorization).

5.1 The size of an integer

The umfpack di * and umfpack zi * routines use int integer arguments; those starting with
umfpack dl or umfpack zl use SuiteSparse long integer arguments. If you compile UMFPACK
in the standard ILP32 mode (32-bit int’s, long’s, and pointers) then the versions are essentially
identical. You will be able to solve problems using up to 2GB of memory. If you compile UMF-
PACK in the standard LP64 mode, the size of an int remains 32-bits, but the size of a long and
a pointer both get promoted to 64-bits. In the LP64 mode, the umfpack dl * and umfpack zl *

routines can solve huge problems (not limited to 2GB), limited of course by the amount of available
memory. The only drawback to the 64-bit mode is that not all BLAS libraries support 64-bit inte-
gers. This limits the performance you will obtain. Those that do support 64-bit integers are specific
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to particular architectures, and are not portable. UMFPACK and AMD should be compiled in the
same mode. If you compile UMFPACK and AMD in the LP64 mode, be sure to add -DLP64 to the
compilation command. See the examples in the SuiteSparse config/SuiteSparse config.mk

file.

5.2 Real and complex floating-point

The umfpack di * and umfpack dl * routines take (real) double precision arguments, and return
double precision arguments. In the umfpack zi * and umfpack zl * routines, these same arguments
hold the real part of the matrices; and second double precision arrays hold the imaginary part of
the input and output matrices. Internally, complex numbers are stored in arrays with their real
and imaginary parts interleaved, as required by the BLAS (“packed” complex form).

New to Version 4.4 is the option of providing input/output arguments in packed complex form.

5.3 Primary routines, and a simple example

Five primary UMFPACK routines are required to factorize A or solve Ax = b. They are fully
described in Section 10:

• umfpack * symbolic:

Pre-orders the columns of A to reduce fill-in. Returns an opaque Symbolic object as a
void * pointer. The object contains the symbolic analysis and is needed for the numeric
factorization. This routine requires only O(|A|) space, where |A| is the number of nonzero
entries in the matrix. It computes upper bounds on the nonzeros in L and U, the floating-
point operations required, and the memory usage of umfpack * numeric. The Symbolic

object is small; it contains just the column pre-ordering, the supernodal column elimination
tree, and information about each frontal matrix. It is no larger than about 13n integers if A
is n-by-n.

• umfpack * numeric:

Numerically scales and then factorizes a sparse matrix into PAQ, PRAQ, or PR−1AQ into
the product LU, where P and Q are permutation matrices, R is a diagonal matrix of scale
factors, L is lower triangular with unit diagonal, and U is upper triangular. Requires the
symbolic ordering and analysis computed by umfpack * symbolic or umfpack * qsymbolic.
Returns an opaque Numeric object as a void * pointer. The object contains the numeri-
cal factorization and is used by umfpack * solve. You can factorize a new matrix with a
different values (but identical pattern) as the matrix analyzed by umfpack * symbolic or
umfpack * qsymbolic by re-using the Symbolic object (this feature is available when using
UMFPACK in a C or Fortran program, but not in MATLAB). The matrix U will have zeros
on the diagonal if A is singular; this produces a warning, but the factorization is still valid.

• umfpack * solve:

Solves a sparse linear system (Ax = b, ATx = b, or systems involving just L or U), using
the numeric factorization computed by umfpack * numeric. Iterative refinement with sparse
backward error [3] is used by default. The matrix A must be square. If it is singular,
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then a divide-by-zero will occur, and your solution with contain IEEE Inf’s or NaN’s in the
appropriate places.

• umfpack * free symbolic:

Frees the Symbolic object created by umfpack * symbolic or umfpack * qsymbolic.

• umfpack * free numeric:

Frees the Numeric object created by umfpack * numeric.

Be careful not to free a Symbolic object with umfpack * free numeric. Nor should you attempt
to free a Numeric object with umfpack * free symbolic. Failure to free these objects will lead to
memory leaks.

The matrix A is represented in compressed column form, which is identical to the sparse matrix
representation used by MATLAB. It consists of three or four arrays, where the matrix is m-by-n,
with nz entries. For the int version of UMFPACK:

int Ap [n+1] ;

int Ai [nz] ;

double Ax [nz] ;

For the SuiteSparse long version of UMFPACK:

SuiteSparse_long Ap [n+1] ;

SuiteSparse_long Ai [nz] ;

double Ax [nz] ;

The complex versions add another array for the imaginary part:

double Az [nz] ;

Alternatively, if Az is NULL, the real part of the kth entry is located in Ax[2*k] and the imaginary
part is located in Ax[2*k+1], and the Ax array is of size 2*nz.

All nonzeros are entries, but an entry may be numerically zero. The row indices of entries in
column j are stored in Ai[Ap[j] . . . Ap[j+1]-1]. The corresponding numerical values are stored
in Ax[Ap[j] . . . Ap[j+1]-1]. The imaginary part, for the complex versions, is stored in Az[Ap[j]

. . . Ap[j+1]-1] (see above for the packed complex case).
No duplicate row indices may be present, and the row indices in any given column must be

sorted in ascending order. The first entry Ap[0] must be zero. The total number of entries in the
matrix is thus nz = Ap[n]. Except for the fact that extra zero entries can be included, there is thus
a unique compressed column representation of any given matrix A. For a more flexible method for
providing an input matrix to UMFPACK, see Section 5.6.

Here is a simple main program, umfpack simple.c, that illustrates the basic usage of UMF-
PACK. See Section 6 for a short description of each calling sequence, including a list of options for
the first argument of umfpack di solve.
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The Ap, Ai, and Ax arrays represent the matrix

A =


2 3 0 0 0
3 0 4 0 6
0 −1 −3 2 0
0 0 1 0 0
0 4 2 0 1

 .

and the solution to Ax = b is x = [1 2 3 4 5]T. The program uses default control settings and
does not return any statistics about the ordering, factorization, or solution (Control and Info are
both (double *) NULL). It also ignores the status value returned by most user-callable UMFPACK
routines.

5.4 A note about zero-sized arrays

UMFPACK uses many user-provided arrays of size m or n (the order of the matrix), and of size
nz (the number of nonzeros in a matrix). UMFPACK does not handle zero-dimensioned arrays; it
returns an error code if m or n are zero. However, nz can be zero, since all singular matrices are
handled correctly. If you attempt to malloc an array of size nz = 0, however, malloc will return
a null pointer which UMFPACK will report as a missing argument. If you malloc an array of size
nz to pass to UMFPACK, make sure that you handle the nz = 0 case correctly (use a size equal to
the maximum of nz and 1, or use a size of nz+1).

5.5 Alternative routines

Three alternative routines are provided that modify UMFPACK’s default behavior. They are fully
described in Section 11:

• umfpack * defaults:

Sets the default control parameters in the Control array. These can then be modified as
desired before passing the array to the other UMFPACK routines. Control parameters are
summarized in Section 5.10. Three particular parameters deserve special notice. UMFPACK
uses relaxed partial pivoting, where a candidate pivot entry is numerically acceptable if its
magnitude is greater than or equal to a tolerance parameter times the magnitude of the
largest entry in the same column. The parameter Control [UMFPACK PIVOT TOLERANCE]

has a default value of 0.1, and is used for the unsymmetric strategy. For complex matrices,
a cheap approximation of the absolute value is used for the threshold pivoting test (|a| ≈
|areal|+ |aimag|).
For the symmetric strategy, a second tolerance is used for diagonal entries:
Control [UMFPACK SYM PIVOT TOLERANCE], with a default value of 0.001. The first parame-
ter (with a default of 0.1) is used for any off-diagonal candidate pivot entries.

These two parameters may be too small for some matrices, particularly for ill-conditioned or
poorly scaled ones. With the default pivot tolerances and default iterative refinement, x =

umfpack (A,’\’,b) is just as accurate as (or more accurate) than x = A\b in MATLAB 6.1
for nearly all matrices.
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If Control [UMFPACK PIVOT TOLERANCE] is zero, than any nonzero entry is acceptable as a
pivot (this is changed from Version 4.0, which treated a value of 0.0 the same as 1.0). If the
symmetric strategy is used, and Control [UMFPACK SYM PIVOT TOLERANCE] is zero, then any
nonzero entry on the diagonal is accepted as a pivot. Off-diagonal pivoting will still occur if the
diagonal entry is exactly zero. The Control [UMFPACK SYM PIVOT TOLERANCE] parameter is
new to Version 4.1. It is similar in function to the pivot tolerance for left-looking methods (the
MATLAB THRESH option in [L,U,P] = lu (A, THRESH), and the pivot tolerance parameter
in SuperLU).

The parameter Control [UMFPACK STRATEGY] can be used to bypass UMFPACK’s automatic
strategy selection. The automatic strategy nearly always selects the best method. When it
does not, the different methods nearly always give about the same quality of results. There
may be cases where the automatic strategy fails to pick a good strategy. Also, you can
save some computing time if you know the right strategy for your set of matrix problems.
The default is UMFPACK_STRATEGY_AUTO, in which UMFPACK selects the strategy by itself.
UMFPACK_STRATEGY_UNSYMMETRIC gives the unsymmetric strategy, which is to use a column
pre-ordering (such as COLAMD) and to give no preference to the diagonal during partial
pivoting. UMFPACK_STRATEGY_SYMMETRIC gives the symmetric strategy, which is to use a
symmetric row and column ordering (such as AMD) and to give strong preference to the
diagonal during partial pivoting.

The parameter Control [UMFPACK ORDERING] defines what ordering method UMFPACK
should use. The options are:

– UMFPACK_ORDERING_CHOLMOD (0). This is the method used by CHOLMOD. It first tries
AMD or COLAMD (depending on what strategy is used). If that method gives low
fill-in, it is used without trying METIS at all. Otherwise METIS is tried (on ATA for
the unsymmetric strategy, or A + AT for the symmetric strategy), and the ordering
(AMD/COLAMD or METIS) giving the lowest fill-in is used.

– UMFPACK_ORDERING_DEFAULT. This is the same as UMFPACK_ORDERING_AMD.

– UMFPACK_ORDERING_AMD (1). This is the default. AMD is used for the symmetric strat-
egy, on the pattern of A + AT . COLAMD is used on A for the unsymmetric strategy.

– UMFPACK_ORDERING_GIVEN (2). This is assumed if a permutation is provided to
umfpack * qsymbolic.

– UMFPACK_ORDERING_METIS (3). Use METIS (on ATA for the unsymmetric strategy, or
A + AT for the symmetric strategy).

– UMFPACK_ORDERING_BEST (4). Try three methods and take the best. The three methods
are AMD/COLAMD, METIS, and NESDIS (CHOLMOD’s nested dissection ordering,
based on METIS and CCAMD/CCOLAMD). This results the highest analysis time, but
the lowest numerical factorization time.

– UMFPACK_ORDERING_NONE (5). The matrix is factorized as-is, except that singletons are
still removed.

– UMFPACK_ORDERING_USER (6). Use the user-ordering function passed to
umfpack * fsymbolic. Refer to UMFPACK/Source/umf_cholmod.c for an example.
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To disable the singleton filter, set Control [UMFPACK_SINGLETONS] to 0. Disabling this
search for singletons can slow UMFPACK down quite a bit for some matrices, but it does
ensure that L is well-conditioned and that any ill-conditioning of A is captured only in U.

• umfpack * qsymbolic:

An alternative to umfpack * symbolic. Allows the user to specify his or her own column
pre-ordering, rather than using the default COLAMD or AMD pre-orderings. For example,
a graph partitioning-based order of ATA would be suitable for UMFPACK’s unsymmetric
strategy. A partitioning of A + AT would be suitable for UMFPACK’s symmetric strategy.

• umfpack * fsymbolic:

An alternative to umfpack * symbolic. Allows the user to pass a pointer to a function, which
is called to compute the ordering on the matrix (or on a submatrix with singletons removed,
if any exist).

• umfpack * wsolve:

An alternative to umfpack * solve which does not dynamically allocate any memory. Re-
quires the user to pass two additional work arrays.

5.6 Matrix manipulation routines

The compressed column data structure is compact, and simplifies the UMFPACK routines that
operate on the sparse matrix A. However, it can be inconvenient for the user to generate. Section 12
presents the details of routines for manipulating sparse matrices in triplet form, compressed column
form, and compressed row form (the transpose of the compressed column form). The triplet form
of a matrix consists of three or four arrays. For the int version of UMFPACK:

int Ti [nz] ;

int Tj [nz] ;

double Tx [nz] ;

For the SuiteSparse long version:

SuiteSparse_long Ti [nz] ;

SuiteSparse_long Tj [nz] ;

double Tx [nz] ;

The complex versions use another array to hold the imaginary part:

double Tz [nz] ;

The k-th triplet is (i, j, aij), where i = Ti[k], j = Tj[k], and aij = Tx[k]. For the complex
versions, Tx[k] is the real part of aij and Tz[k] is the imaginary part. The triplets can be in any
order in the Ti, Tj, and Tx arrays (and Tz for the complex versions), and duplicate entries may
exist. If Tz is NULL, then the array Tx becomes of size 2*nz, and the real and imaginary parts
of the k-th triplet are located in Tx[2*k] and Tx[2*k+1], respectively. Any duplicate entries are
summed when the triplet form is converted to compressed column form. This is a convenient way
to create a matrix arising in finite-element methods, for example.

Four routines are provided for manipulating sparse matrices:
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• umfpack * triplet to col:

Converts a triplet form of a matrix to compressed column form (ready for input to
umfpack * symbolic, umfpack * qsymbolic, and umfpack * numeric). Identical to A =

spconvert(i,j,x) in MATLAB, except that zero entries are not removed, so that the pattern
of entries in the compressed column form of A are fully under user control. This is important
if you want to factorize a new matrix with the Symbolic object from a prior matrix with the
same pattern as the new one.

• umfpack * col to triplet:

The opposite of umfpack * triplet to col. Identical to [i,j,x] = find(A) in MATLAB,
except that numerically zero entries may be included.

• umfpack * transpose:

Transposes and optionally permutes a column form matrix [26]. Identical to R = A(P,Q)’

(linear algebraic transpose, using the complex conjugate) or R = A(P,Q).’ (the array trans-
pose) in MATLAB, except for the presence of numerically zero entries.

Factorizing AT and then solving Ax = b with the transposed factors can sometimes be much
faster or much slower than factorizing A. It is highly dependent on your particular matrix.

• umfpack * scale:

Applies the row scale factors to a user-provided vector. This is not required to solve the
sparse linear system Ax = b or ATx = b, since umfpack * solve applies the scale factors
for those systems.

It is quite easy to add matrices in triplet form, subtract them, transpose them, permute them,
construct a submatrix, and multiply a triplet-form matrix times a vector. UMFPACK does not pro-
vide code for these basic operations, however. Refer to the discussion of umfpack * triplet to col

in Section 12 for more details on how to compute these operations in your own code. The only
primary matrix operation not provided by UMFPACK is the multiplication of two sparse matri-
ces [26]. The CHOLMOD provides many of these matrix operations, which can then be used in
conjunction with UMFPACK. See my web page for details.

5.7 Getting the contents of opaque objects

There are cases where you may wish to do more with the LU factorization of a matrix than solve a
linear system. The opaque Symbolic and Numeric objects are just that - opaque. You cannot do
anything with them except to pass them back to subsequent calls to UMFPACK. Three routines are
provided for copying their contents into user-provided arrays using simpler data structures. Four
routines are provided for saving and loading the Numeric and Symbolic objects to/from binary
files. An additional routine is provided that computes the determinant. They are fully described
in Section 13:

• umfpack * get lunz:

Returns the number of nonzeros in L and U.
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• umfpack * get numeric:

Copies L, U, P, Q, and R from the Numeric object into arrays provided by the user. The
matrix L is returned in compressed row form (with the column indices in each row sorted
in ascending order). The matrix U is returned in compressed column form (with sorted
columns). There are no explicit zero entries in L and U, but such entries may exist in the
Numeric object. The permutations P and Q are represented as permutation vectors, where
P[k] = i means that row i of the original matrix is the the k-th row of PAQ, and where
Q[k] = j means that column j of the original matrix is the k-th column of PAQ. This is
identical to how MATLAB uses permutation vectors (type help colamd in MATLAB 6.1 or
later).

• umfpack * get symbolic:

Copies the contents of the Symbolic object (the initial row and column preordering, supern-
odal column elimination tree, and information about each frontal matrix) into arrays provided
by the user.

• umfpack * get determinant:

Computes the determinant from the diagonal of U and the permutations P and Q. This is
mostly of theoretical interest. It is not a good test to determine if your matrix is singular or
not.

• umfpack * save numeric:

Saves a copy of the Numeric object to a file, in binary format.

• umfpack * load numeric:

Creates a Numeric object by loading it from a file created by umfpack * save numeric.

• umfpack * save symbolic:

Saves a copy of the Symbolic object to a file, in binary format.

• umfpack * load symbolic:

Creates a Symbolic object by loading it from a file created by umfpack * save symbolic.

UMFPACK itself does not make use of these routines; they are provided solely for returning
the contents of the opaque Symbolic and Numeric objects to the user, and saving/loading them
to/from a binary file. None of them do any computation, except for umfpack * get determinant.

5.8 Reporting routines

None of the UMFPACK routines discussed so far prints anything, even when an error occurs.
UMFPACK provides you with nine routines for printing the input and output arguments (including
the Control settings and Info statistics) of UMFPACK routines discussed above. They are fully
described in Section 14:

• umfpack * report status:

Prints the status (return value) of other umfpack * routines.
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• umfpack * report info:

Prints the statistics returned in the Info array by umfpack * *symbolic, umfpack * numeric,
and umfpack * *solve.

• umfpack * report control:

Prints the Control settings.

• umfpack * report matrix:

Verifies and prints a compressed column-form or compressed row-form sparse matrix.

• umfpack * report triplet:

Verifies and prints a matrix in triplet form.

• umfpack * report symbolic:

Verifies and prints a Symbolic object.

• umfpack * report numeric:

Verifies and prints a Numeric object.

• umfpack * report perm:

Verifies and prints a permutation vector.

• umfpack * report vector:

Verifies and prints a real or complex vector.

The umfpack * report * routines behave slightly differently when compiled into the C-callable
UMFPACK library than when used in the MATLAB mexFunction. MATLAB stores its sparse
matrices using the same compressed column data structure discussed above, where row and column
indices of an m-by-n matrix are in the range 0 to m− 1 or n− 1, respectively2 It prints them as if
they are in the range 1 to m or n. The UMFPACK mexFunction behaves the same way.

You can control how much the umfpack * report * routines print by modifying the Control

[UMFPACK PRL] parameter. Its default value is 1. Here is a summary of how the routines use this
print level parameter:

• umfpack * report status:

No output if the print level is 0 or less, even when an error occurs. If 1, then error messages
are printed, and nothing is printed if the status is UMFPACK OK. A warning message is printed
if the matrix is singular. If 2 or more, then the status is always printed. If 4 or more, then
the UMFPACK Copyright is printed. If 6 or more, then the UMFPACK License is printed.
See also the first page of this User Guide for the Copyright and License.

• umfpack * report control:

No output if the print level is 1 or less. If 2 or more, all of Control is printed.

2Complex matrices in MATLAB use the split array form, with one double array for the real part and another
array for the imaginary part. UMFPACK supports that format, as well as the packed complex format (new to Version
4.4).
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• umfpack * report info:

No output if the print level is 1 or less. If 2 or more, all of Info is printed.

• all other umfpack * report * routines:

If the print level is 2 or less, then these routines return silently without checking their inputs.
If 3 or more, the inputs are fully verified and a short status summary is printed. If 4, then
the first few entries of the input arguments are printed. If 5, then all of the input arguments
are printed.

This print level parameter has an additional effect on the MATLAB mexFunction. If zero, then
no warnings of singular or nearly singular matrices are printed (similar to the MATLAB commands
warning off MATLAB:singularMatrix and warning off MATLAB:nearlySingularMatrix).

5.9 Utility routines

Three timing routines are provided in UMFPACK Version 4.1 and following, umfpack tic, umfpack toc,
and umfpack timer. These three routines are the only user-callable routine that is identical in all
four int/SuiteSparse long, real/complex versions (there is no umfpack di timer routine, for
example).

5.10 Control parameters

UMFPACK uses an optional double array (currently of size 20) to modify its control parameters.
If you pass (double *) NULL instead of a Control array, then defaults are used. These defaults
provide nearly optimal performance (both speed, memory usage, and numerical accuracy) for a
wide range of matrices from real applications.

This array will almost certainly grow in size in future releases, so be sure to dimension your
Control array to be of size UMFPACK CONTROL. That constant is currently defined to be 20, but may
increase in future versions, since all 20 entries are in use.

The contents of this array may be modified by the user (see umfpack * defaults). Each user-
callable routine includes a complete description of how each control setting modifies its behavior.
Table 2 summarizes the entire contents of the Control array. Note that ANSI C uses 0-based
indexing, while MATLAB uses 1-based indexing. Thus, Control(1) in MATLAB is the same as
Control[0] or Control[UMFPACK PRL] in ANSI C.

Let αr =Control [UMFPACK DENSE ROW], αc =Control [UMFPACK DENSE COL], and α =Control

[UMFPACK AMD DENSE]. Suppose the submatrix S, obtained after eliminating pivots with zero Markowitz
cost, is m-by-n. Then a row is considered “dense” if it has more than max(16, 16αr

√
n) entries. A

column is considered “dense” if it has more than max(16, 16αc
√
m) entries. These rows and columns

are treated different in COLAMD and during numerical factorization. In COLAMD, dense columns
are placed last in their natural order, and dense rows are ignored. During numerical factorization,
dense rows are stored differently. In AMD, a row/column of the square matrix S + ST is consid-
ered “dense” if it has more than max(16, α

√
n) entries. These rows/columns are placed last in

AMD’s output ordering. For more details on the control parameters, refer to the documentation
of umfpack * qsymbolic, umfpack * fsymbolic, umfpack * numeric, umfpack * solve, and the
umfpack * report * routines, in Sections 10 through 14, below.
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Table 2: UMFPACK Control parameters
MATLAB ANSI C default description
struct

prl Control[UMFPACK PRL] 1 printing level
- Control[UMFPACK DENSE ROW] 0.2 dense row parameter
- Control[UMFPACK DENSE COL] 0.2 dense column parameter
tol Control[UMFPACK PIVOT TOLERANCE] 0.1 partial pivoting tolerance
- Control[UMFPACK BLOCK SIZE] 32 BLAS block size
strategy Control[UMFPACK STRATEGY] 0 (auto) select strategy
ordering Control[UMFPACK ORDERING] 1 (AMD) select ordering
- Control[UMFPACK ALLOC INIT] 0.7 initial memory allocation
irstep Control[UMFPACK IRSTEP] 2 max iter. refinement steps
- Control[UMFPACK FIXQ] 0 (auto) fix or modify Q
- Control[UMFPACK AMD DENSE] 10 AMD dense row/col param.
symtol Control[UMFPACK SYM PIVOT TOLERANCE] 0.001 for diagonal entries
scale Control[UMFPACK SCALE] 1 (sum) row scaling (none, sum, max)
- Control[UMFPACK FRONT ALLOC INIT] 0.5 frontal matrix allocation ratio
- Control[UMFPACK DROPTOL] 0 drop tolerance
- Control[UMFPACK AGGRESSIVE] 1 (yes) aggressive absorption
singletons Control[UMFPACK SINGLETONS] 1 (enable) enable singleton filter

5.11 Error codes

Many of the routines return a status value. This is also returned as the first entry in the Info

array, for those routines with that argument. The following list summarizes all of the error codes
in UMFPACK. Each error code is given a specific name in the umfpack.h include file, so you can
use those constants instead of hard-coded values in your program. Future versions may report
additional error codes.

A value of zero means everything was successful, and the matrix is non-singular. A value greater
than zero means the routine was successful, but a warning occurred. A negative value means the
routine was not successful. In this case, no Symbolic or Numeric object was created.

• UMFPACK OK, (0): UMFPACK was successful.

• UMFPACK WARNING singular matrix, (1): Matrix is singular. There are exact zeros on the
diagonal of U.

• UMFPACK WARNING determinant underflow, (2): The determinant is nonzero, but smaller in
magnitude than the smallest positive floating-point number.

• UMFPACK WARNING determinant overflow, (3): The determinant is larger in magnitude than
the largest positive floating-point number (IEEE Inf).

• UMFPACK ERROR out of memory, (-1): Not enough memory. The ANSI C malloc or realloc

routine failed.

• UMFPACK ERROR invalid Numeric object, (-3): Routines that take a Numeric object as input
(or load it from a file) check this object and return this error code if it is invalid. This can
be caused by a memory leak or overrun in your program, which can overwrite part of the
Numeric object. It can also be caused by passing a Symbolic object by mistake, or some other
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pointer. If you try to factorize a matrix using one version of UMFPACK and then use the
factors in another version, this error code will trigger as well. You cannot factor your matrix
using version 4.0 and then solve with version 4.1, for example.3. You cannot use different
precisions of the same version (real and complex, for example). It is possible for the Numeric

object to be corrupted by your program in subtle ways that are not detectable by this quick
check. In this case, you may see an UMFPACK ERROR different pattern error code, or even
an UMFPACK ERROR internal error.

• UMFPACK ERROR invalid Symbolic object, (-4): Routines that take a Symbolic object as
input (or load it from a file) check this object and return this error code if it is invalid.
The causes of this error are analogous to the UMFPACK ERROR invalid Numeric object error
described above.

• UMFPACK ERROR argument missing, (-5): Some arguments of some are optional (you can pass
a NULL pointer instead of an array). This error code occurs if you pass a NULL pointer when
that argument is required to be present.

• UMFPACK ERROR n nonpositive (-6): The number of rows or columns of the matrix must be
greater than zero.

• UMFPACK ERROR invalid matrix (-8): The matrix is invalid. For the column-oriented input,
this error code will occur if the contents of Ap and/or Ai are invalid.

Ap is an integer array of size n col+1. On input, it holds the “pointers” for the column form of
the sparse matrix A. Column j of the matrix A is held in Ai [(Ap [j]) . . . (Ap [j+1]-1)].
The first entry, Ap [0], must be zero, and Ap [j] ≤ Ap [j+1] must hold for all j in the
range 0 to n col-1. The value nz = Ap [n col] is thus the total number of entries in the
pattern of the matrix A. nz must be greater than or equal to zero.

The nonzero pattern (row indices) for column j is stored in Ai [(Ap [j]) . . . (Ap [j+1]-1)].
The row indices in a given column j must be in ascending order, and no duplicate row indices
may be present. Row indices must be in the range 0 to n row-1 (the matrix is 0-based).

Some routines take a triplet-form input, with arguments nz, Ti, and Tj. This error code is
returned if nz is less than zero, if any row index in Ti is outside the range 0 to n col-1, or
if any column index in Tj is outside the range 0 to n row-1.

• UMFPACK ERROR different pattern, (-11): The most common cause of this error is that the
pattern of the matrix has changed between the symbolic and numeric factorization. It can
also occur if the Numeric or Symbolic object has been subtly corrupted by your program.

• UMFPACK ERROR invalid system, (-13): The sys argument provided to one of the solve rou-
tines is invalid.

• UMFPACK ERROR invalid permutation, (-15): The permutation vector provided as input is
invalid.

3Exception: v4.3, v4.3.1, and v4.4 use identical data structures for the Numeric and Symbolic objects
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• UMFPACK ERROR file IO, (-17): This error code is returned by the routines that save and
load the Numeric or Symbolic objects to/from a file, if a file I/O error has occurred. The file
may not exist or may not be readable, you may be trying to create a file that you don’t have
permission to create, or you may be out of disk space. The file you are trying to read might
be the wrong one, and an earlier end-of-file condition would then result in this error.

• UMFPACK ERROR ordering failed, (-18): The ordering method failed.

• UMFPACK ERROR internal error, (-911): An internal error has occurred, of unknown cause.
This is either a bug in UMFPACK, or the result of a memory overrun from your program. Try
modifying the file AMD/Include/amd internal.h and adding the statement #undef NDEBUG,
to enable the debugging mode. Recompile UMFPACK and rerun your program. A failed
assertion might occur which can give you a better indication as to what is going wrong.
Be aware that UMFPACK will be extraordinarily slow when running in debug mode. If all
else fails, contact the developer (DrTimothyAldenDavis@gmail.com) with as many details as
possible.

5.12 Larger examples

Full examples of all user-callable UMFPACK routines are available in four stand-alone C main
programs, umfpack * demo.c. Another example is the UMFPACK mexFunction, umfpackmex.c.
The mexFunction accesses only the user-callable C interface to UMFPACK. The only features
that it does not use are the support for the triplet form (MATLAB’s sparse arrays are already
in the compressed column form) and the ability to reuse the Symbolic object to numerically fac-
torize a matrix whose pattern is the same as a prior matrix analyzed by umfpack * symbolic,
umfpack * qsymbolic or umfpack * fsymbolic. The latter is an important feature, but the mex-
Function does not return its opaque Symbolic and Numeric objects to MATLAB. Instead, it gets
the contents of these objects after extracting them via the umfpack * get * routines, and returns
them as MATLAB sparse matrices.

The umf4.c program for reading matrices in Harwell/Boeing format [15] is provided. It requires
three Fortran 77 programs (readhb.f, readhb nozeros.f, and readhb size.f) for reading in the
sample Harwell/Boeing files in the UMFPACK/Demo/HB directory. More matrices are available at
http://www.suitesparse.com. Type make hb in the UMFPACK/Demo/HB directory to compile and run
this demo. This program was used for the experimental results in [5].

6 Synopsis of C-callable routines

Each subsection, below, summarizes the input variables, output variables, return values, and calling
sequences of the routines in one category. Variables with the same name as those already listed in
a prior category have the same size and type.

The real, SuiteSparse long integer umfpack dl * routines are identical to the real, int rou-
tines, except that di is replaced with dl in the name, and all int arguments become SuiteSparse long.
Similarly, the complex, SuiteSparse long integer umfpack zl * routines are identical to the com-
plex, int routines, except that zi is replaced with zl in the name, and all int arguments
become SuiteSparse long. Only the real and complex int versions are listed in the synopsis
below.
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Table 3: UMFPACK sys parameter
Value system

UMFPACK A (0) Ax = b

UMFPACK At (1) AHx = b

UMFPACK Aat (2) ATx = b

UMFPACK Pt L (3) PTLx = b
UMFPACK L (4) Lx = b

UMFPACK Lt P (5) LHPx = b

UMFPACK Lat P (6) LTPx = b

UMFPACK Lt (7) LHx = b

UMFPACK Lat (8) LTx = b

UMFPACK U Qt (9) UQTx = b
UMFPACK U (10) Ux = b

UMFPACK Q Ut (11) QUHx = b

UMFPACK Q Uat (12) QUTx = b

UMFPACK Ut (13) UHx = b

UMFPACK Uat (14) UTx = b

The matrix A is m-by-n with nz entries.
The sys argument of umfpack * solve is an integer in the range 0 to 14 which defines which

linear system is to be solved. 4 Valid values are listed in Table 3. The notation AH refers to the
matrix transpose, which is the complex conjugate transpose for complex matrices (A’ in MATLAB).
The array transpose is AT, which is A.’ in MATLAB.

6.1 Primary routines: real/int

#include "umfpack.h"

int status, sys, n, m, nz, Ap [n+1], Ai [nz] ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], Ax [nz], X [n], B [n] ;

void *Symbolic, *Numeric ;

status = umfpack_di_symbolic (m, n, Ap, Ai, Ax, &Symbolic, Control, Info) ;

status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ;

status = umfpack_di_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ;

umfpack_di_free_symbolic (&Symbolic) ;

umfpack_di_free_numeric (&Numeric) ;

6.2 Alternative routines: real/int

int Qinit [n], Wi [n] ;

double W [5*n] ;

4Integer values for sys are used instead of strings (as in LINPACK and LAPACK) to avoid C-to-Fortran portability
issues.
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umfpack_di_defaults (Control) ;

status = umfpack_di_qsymbolic (m, n, Ap, Ai, Ax, Qinit, &Symbolic, Control, Info) ;

status = umfpack_di_fsymbolic (m, n, Ap, Ai, Ax, &user_ordering, user_params, &Symbolic, Control, Info) ;

status = umfpack_di_wsolve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info, Wi, W) ;

6.3 Matrix manipulation routines: real/int

int Ti [nz], Tj [nz], P [m], Q [n], Rp [m+1], Ri [nz], Map [nz] ;

double Tx [nz], Rx [nz], Y [m], Z [m] ;

status = umfpack_di_col_to_triplet (n, Ap, Tj) ;

status = umfpack_di_triplet_to_col (m, n, nz, Ti, Tj, Tx, Ap, Ai, Ax, Map) ;

status = umfpack_di_transpose (m, n, Ap, Ai, Ax, P, Q, Rp, Ri, Rx) ;

status = umfpack_di_scale (Y, Z, Numeric) ;

6.4 Getting the contents of opaque objects: real/int

The filename string should be large enough to hold the name of a file.

int lnz, unz, Lp [m+1], Lj [lnz], Up [n+1], Ui [unz], do_recip ;

double Lx [lnz], Ux [unz], D [min (m,n)], Rs [m], Mx [1], Ex [1] ;

int nfr, nchains, P1 [m], Q1 [n], Front_npivcol [n+1], Front_parent [n+1], Front_1strow [n+1],

Front_leftmostdesc [n+1], Chain_start [n+1], Chain_maxrows [n+1], Chain_maxcols [n+1] ;

char filename [100] ;

status = umfpack_di_get_lunz (&lnz, &unz, &m, &n, &nz_udiag, Numeric) ;

status = umfpack_di_get_numeric (Lp, Lj, Lx, Up, Ui, Ux, P, Q, D,

&do_recip, Rs, Numeric) ;

status = umfpack_di_get_symbolic (&m, &n, &n1, &nz, &nfr, &nchains, P1, Q1,

Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc,

Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ;

status = umfpack_di_load_numeric (&Numeric, filename) ;

status = umfpack_di_save_numeric (Numeric, filename) ;

status = umfpack_di_load_symbolic (&Symbolic, filename) ;

status = umfpack_di_save_symbolic (Symbolic, filename) ;

status = umfapck_di_get_determinant (Mx, Ex, Numeric, Info) ;

6.5 Reporting routines: real/int

umfpack_di_report_status (Control, status) ;

umfpack_di_report_control (Control) ;

umfpack_di_report_info (Control, Info) ;

status = umfpack_di_report_matrix (m, n, Ap, Ai, Ax, 1, Control) ;

status = umfpack_di_report_matrix (m, n, Rp, Ri, Rx, 0, Control) ;

status = umfpack_di_report_numeric (Numeric, Control) ;

status = umfpack_di_report_perm (m, P, Control) ;

status = umfpack_di_report_perm (n, Q, Control) ;

status = umfpack_di_report_symbolic (Symbolic, Control) ;

status = umfpack_di_report_triplet (m, n, nz, Ti, Tj, Tx, Control) ;

status = umfpack_di_report_vector (n, X, Control) ;
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6.6 Primary routines: complex/int

double Az [nz], Xx [n], Xz [n], Bx [n], Bz [n] ;

status = umfpack_zi_symbolic (m, n, Ap, Ai, Ax, Az, &Symbolic, Control, Info) ;

status = umfpack_zi_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ;

status = umfpack_zi_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric, Control, Info) ;

umfpack_zi_free_symbolic (&Symbolic) ;

umfpack_zi_free_numeric (&Numeric) ;

The arrays Ax, Bx, and Xx double in size if any imaginary argument (Az, Xz, or Bz) is NULL.

6.7 Alternative routines: complex/int

double Wz [10*n] ;

umfpack_zi_defaults (Control) ;

status = umfpack_zi_qsymbolic (m, n, Ap, Ai, Ax, Az, Qinit, &Symbolic, Control, Info) ;

status = umfpack_zi_fsymbolic (m, n, Ap, Ai, Ax, Az, &user_ordering, user_params, &Symbolic, Control, Info) ;

status = umfpack_zi_wsolve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric, Control, Info, Wi, Wz) ;

6.8 Matrix manipulation routines: complex/int

double Tz [nz], Rz [nz], Yx [m], Yz [m], Zx [m], Zz [m] ;

status = umfpack_zi_col_to_triplet (n, Ap, Tj) ;

status = umfpack_zi_triplet_to_col (m, n, nz, Ti, Tj, Tx, Tz, Ap, Ai, Ax, Az, Map) ;

status = umfpack_zi_transpose (m, n, Ap, Ai, Ax, Az, P, Q, Rp, Ri, Rx, Rz, 1) ;

status = umfpack_zi_transpose (m, n, Ap, Ai, Ax, Az, P, Q, Rp, Ri, Rx, Rz, 0) ;

status = umfpack_zi_scale (Yx, Yz, Zx, Zz, Numeric) ;

The arrays Tx, Rx, Yx, and Zx double in size if any imaginary argument (Tz, Rz, Yz, or Zz) is
NULL.

6.9 Getting the contents of opaque objects: complex/int

double Lz [lnz], Uz [unz], Dx [min (m,n)], Dz [min (m,n)], Mz [1] ;

status = umfpack_zi_get_lunz (&lnz, &unz, &m, &n, &nz_udiag, Numeric) ;

status = umfpack_zi_get_numeric (Lp, Lj, Lx, Lz, Up, Ui, Ux, Uz, P, Q, Dx, Dz,

&do_recip, Rs, Numeric) ;

status = umfpack_zi_get_symbolic (&m, &n, &n1, &nz, &nfr, &nchains, P1, Q1,

Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc,

Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ;

status = umfpack_zi_load_numeric (&Numeric, filename) ;

status = umfpack_zi_save_numeric (Numeric, filename) ;

status = umfpack_zi_load_symbolic (&Symbolic, filename) ;

status = umfpack_zi_save_symbolic (Symbolic, filename) ;

status = umfapck_zi_get_determinant (Mx, Mz, Ex, Numeric, Info) ;

The arrays Lx, Ux, Dx, and Mx double in size if any imaginary argument (Lz, Uz, Dz, or Mz) is
NULL.

27



6.10 Reporting routines: complex/int

umfpack_zi_report_status (Control, status) ;

umfpack_zi_report_control (Control) ;

umfpack_zi_report_info (Control, Info) ;

status = umfpack_zi_report_matrix (m, n, Ap, Ai, Ax, Az, 1, Control) ;

status = umfpack_zi_report_matrix (m, n, Rp, Ri, Rx, Rz, 0, Control) ;

status = umfpack_zi_report_numeric (Numeric, Control) ;

status = umfpack_zi_report_perm (m, P, Control) ;

status = umfpack_zi_report_perm (n, Q, Control) ;

status = umfpack_zi_report_symbolic (Symbolic, Control) ;

status = umfpack_zi_report_triplet (m, n, nz, Ti, Tj, Tx, Tz, Control) ;

status = umfpack_zi_report_vector (n, Xx, Xz, Control) ;

The arrays Ax, Rx, Tx, and Xx double in size if any imaginary argument (Az, Rz, Tz, or Xz) is
NULL.

6.11 Utility routines

These routines are the same in all four versions of UMFPACK.

double t, s [2] ;

t = umfpack_timer ( ) ;

umfpack_tic (s) ;

umfpack_toc (s) ;

6.12 AMD ordering routines

UMFPACK makes use of the AMD ordering package for its symmetric ordering strategy. You
may also use these four user-callable routines in your own C programs. You need to include the
amd.h file only if you make direct calls to the AMD routines themselves. The int versions are
summarized below; SuiteSparse long versions are also available. Refer to the AMD User Guide
for more information, or to the file amd.h which documents these routines.

#include "amd.h"

double amd_control [AMD_CONTROL], amd_info [AMD_INFO] ;

amd_defaults (amd_control) ;

status = amd_order (n, Ap, Ai, P, amd_control, amd_info) ;

amd_control (amd_control) ;

amd_info (amd_info) ;

7 Using UMFPACK in a Fortran program

UMFPACK includes a basic Fortran 77 interface to some of the C-callable UMFPACK routines.
Since interfacing C and Fortran programs is not portable, this interface might not work with all
C and Fortran compilers. Refer to Section 8 for more details. The following Fortran routines are
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provided. The list includes the C-callable routines that the Fortran interface routine calls. Refer
to the corresponding C routines in Section 5 for more details on what the Fortran routine does.

• umf4def: sets the default control parameters (umfpack di defaults).

• umf4sym: pre-ordering and symbolic factorization (umfpack di symbolic).

• umf4num: numeric factorization (umfpack di numeric).

• umf4solr: solve a linear system with iterative refinement (umfpack di solve).

• umf4sol: solve a linear system without iterative refinement (umfpack di solve). Sets Control
[UMFPACK IRSTEP] to zero, and does not require the matrix A.

• umf4scal: scales a vector using UMFPACK’s scale factors (umfpack di scale).

• umf4fnum: free the Numeric object (umfpack di free numeric).

• umf4fsym: free the Symbolic object (umfpack di free symbolic).

• umf4pcon: prints the control parameters (umfpack di report control).

• umf4pinf: print statistics (umfpack di report info).

• umf4snum: save the Numeric object to a file (umfpack di save numeric).

• umf4ssym: save the Symbolic object to a file (umfpack di save symbolic).

• umf4lnum: load the Numeric object from a file (umfpack di load numeric).

• umf4lsym: load the Symbolic object from a file (umfpack di load symbolic).

The matrix A is passed to UMFPACK in compressed column form, with 0-based indices. In
Fortran, for an m-by-n matrix A with nz entries, the row indices of the first column (column 1) are
in Ai (Ap(1)+1 . . . Ap(2)), with values in Ax (Ap(1)+1 . . . Ap(2)). The last column (column n) is
in Ai (Ap(n)+1 . . . Ap(n+1)) and Ax (Ap(n)+1 . . . Ap(n+1)). The number of entries in the matrix
is thus nz = Ap (n+1). The row indices in Ai are in the range 0 to m-1. They must be sorted, with
no duplicate entries allowed. None of the UMFPACK routines modify the input matrix A. The
following definitions apply for the Fortran routines:

integer m, n, Ap (n+1), Ai (nz), symbolic, numeric, filenum, status

double precision Ax (nz), control (20), info (90), x (n), b (n)

UMFPACK’s status is returned in either a status argument, or in info (1). It is zero if
UMFPACK was successful, 1 if the matrix is singular (this is a warning, not an error), and negative
if an error occurred. Section 5.11 summarizes the possible values of status and info (1). See
Table 3 for a list of the values of the sys argument. See Table 2 for a list of the control parameters
(the Fortran usage is the same as the MATLAB usage for this array).

For the Numeric and Symbolic handles, it is probably safe to assume that a Fortran integer

is sufficient to store a C pointer. If that does not work, try defining numeric and symbolic in

29



your Fortran program as integer arrays of size 2. You will need to define them as integer*8 if you
compile UMFPACK in the 64-bit mode.

To avoid passing strings between C and Fortran in the load/save routines, a file number is
passed instead, and the C interface constructs a file name (if filenum is 42, the Numeric file name
is n42.umf, and the Symbolic file name is s42.umf).

The following is a summary of the calling sequence of each Fortran interface routine. An example
of their use is in the Demo/umf4hb.f file. That routine also includes an example of how to convert a
1-based sparse matrix into 0-based form. For more details on the arguments of each routine, refer to
the arguments of the same name in the corresponding C-callable routine, in Sections 10 through 15.
The only exception is the control argument of umf4sol, which sets control (8) to zero to disable
iterative refinement. Note that the solve routines do not overwrite b with the solution, but return
their solution in a different array, x.

call umf4def (control)

call umf4sym (m, n, Ap, Ai, Ax, symbolic, control, info)

call umf4num (Ap, Ai, Ax, symbolic, numeric, control, info)

call umf4solr (sys, Ap, Ai, Ax, x, b, numeric, control, info)

call umf4sol (sys, x, b, numeric, control, info)

call umf4scal (x, b, numeric, status)

call umf4fnum (numeric)

call umf4fsym (symbolic)

call umf4pcon (control)

call umf4pinf (control)

call umf4snum (numeric, filenum, status)

call umf4ssym (symbolic, filenum, status)

call umf4lnum (numeric, filenum, status)

call umf4lsym (symbolic, filenum, status)

Access to the complex routines in UMFPACK is provided by the interface routines in umf4 f77zwrapper.c.
The following is a synopsis of each routine. All the arguments are the same as the real versions,
except Az, xz, and bz are the imaginary parts of the matrix, solution, and right-hand side, respec-
tively. The Ax, x, and b are the real parts.

call umf4zdef (control)

call umf4zsym (m, n, Ap, Ai, Ax, Az, symbolic, control, info)

call umf4znum (Ap, Ai, Ax, Az, symbolic, numeric, control, info)

call umf4zsolr (sys, Ap, Ai, Ax, Az, x, xz, b, bz, numeric, control, info)

call umf4zsol (sys, x, xz, b, bz, numeric, control, info)

call umf4zscal (x, xz, b, bz, numeric, status)

call umf4zfnum (numeric)

call umf4zfsym (symbolic)

call umf4zpcon (control)

call umf4zpinf (control)

call umf4zsnum (numeric, filenum, status)

call umf4zssym (symbolic, filenum, status)

call umf4zlnum (numeric, filenum, status)

call umf4zlsym (symbolic, filenum, status)

The Fortran interface does not support the packed complex case.
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8 Installation

8.1 Installing the C library

The following discussion assumes you have the make program, either in Unix, or in Windows with
Cygwin5. You can skip this section and go to next one if all you want to use is the UMFPACK
and AMD mexFunctions in MATLAB.

You will need to install both UMFPACK and AMD to use UMFPACK. The UMFPACK and AMD

subdirectories must be placed side-by-side within the same parent directory. AMD is a stand-
alone package that is required by UMFPACK. UMFPACK can be compiled without the BLAS
[11, 12, 27, 25], but your performance will be much less than what it should be.

UMFPACK also requires CHOLMOD, CCAMD, CCOLAMD, COLAMD, and metis-4.0 by de-
fault. You can remove this dependency by compiling with -DNCHOLMOD. Add this to the UMFPACK CONFIG

definition in SuiteSparse config/SuiteSparse config.mk.
System-dependent configurations are in the SuiteSparse config/SuiteSparse config.mk file.

The default settings will work on most systems, except that UMFPACK will be compiled so that
it does not use the BLAS. Sample configurations are provided for Linux, Mac, Sun Solaris, SGI
IRIX, IBM AIX, and the DEC/Compaq Alpha.

To compile and install both packages, go to the UMFPACK directory and type make. This will
compile the libraries (AMD/Lib/libamd.a and UMFPACK/Lib/libumfpack.a). A demo of the AMD
ordering routine will be compiled and tested in the AMD/Demo directory, and five demo programs will
then be compiled and tested in the UMFPACK/Demo directory. The outputs of these demo programs
will then be compared with output files in the distribution. Expect to see a few differences, such
as residual norms, compile-time control settings, and perhaps memory usage differences.

If you have trouble with make for UMFPACK, try using the plain Makefile instead of GNUmakefile.
Go to the UMFPACK/Lib directory and type make -f Makefile.

Use the MATLAB command umfpack make in the MATLAB directory to compile UMFPACK
and AMD for use in MATLAB.

If you have the GNU version of make, the Lib/GNUmakefile and MATLAB/GNUmakefile files are
used. These are much more concise than what the “old” version of make can handle. If you do
not have GNU make, the Lib/Makefile and MATLAB/Makefile files are used instead. Each UMF-
PACK source file is compiled into four versions (double / complex, and int / SuiteSparse long).
A proper old-style Makefile is cumbersome in this case, so these two Makefile’s have been con-
structed by brute force. They ignore dependencies, and simply compile everything. I highly rec-
ommend using GNU make if you wish to modify UMFPACK.

If you compile UMFPACK and AMD and then later change the SuiteSparse config/SuiteSparse config.mk

file then you should type make purge and then make to recompile.
Here are the various parameters that you can control in your SuiteSparse config/SuiteSparse config.mk

file:

• CC = your C compiler, such as cc.

• RANLIB = your system’s ranlib program, if needed.

• CFLAGS = optimization flags, such as -O.

5www.cygwin.com
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• UMFPACK CONFIG = configuration settings for the BLAS, memory allocation routines, and
timing routines.

• LIB = your libraries, such as -lm or -lblas.

• RM = the command to delete a file.

• MV = the command to rename a file.

• F77 = the command to compile a Fortran program (optional).

• F77FLAGS = the Fortran compiler flags (optional).

• F77LIB = the Fortran libraries (optional).

The UMFPACK CONFIG string can include combinations of the following; most deal with how the
BLAS are called:

• -DNBLAS if you do not have any BLAS at all.

• -DNSUNPERF if you are on Solaris but do not have the Sun Performance Library (for the
BLAS).

• -DLONGBLAS if your BLAS takes non-int integer arguments.

• -DBLAS INT = the integer used by the BLAS.

• -DBLAS NO UNDERSCORE for controlling how C calls the Fortran BLAS. This is set automati-
cally for Windows, Sun Solaris, SGI Irix, Red Hat Linux, Compaq Alpha, and AIX (the IBM
RS 6000).

• -DNRECIPROCAL controls a trade-off between speed and accuracy. If defined (or if the pivot
value itself is less than 10−12), then the pivot column is divided by the pivot value during
numeric factorization. Otherwise, it is multiplied by the reciprocal of the pivot, which is faster
but can be less accurate. The default is to multiply by the reciprocal unless the pivot value is
small. This option also modifies how the rows of the matrix A are scaled. If -DNRECIPROCAL
is defined (or if any scale factor is less than 10−12), entries in the rows of A are divided by the
scale factors. Otherwise, they are multiplied by the reciprocal. When compiling the complex
routines with the GNU gcc compiler, the pivot column is always divided by the pivot entry,
because of a numerical accuracy issue encountered with gcc version 3.2 with a few complex
matrices on a Pentium 4M (running Linux). You can still use -DNRECIPROCAL to control how
the scale factors for the rows of A are applied.

• -DNO DIVIDE BY ZERO controls how UMFPACK treats zeros on the diagonal of U, for a singu-
lar matrix A. If defined, then no division by zero is performed (a zero entry on the diagonal
of U is treated as if it were equal to one). By default, UMFPACK will divide by zero.

If a Fortran BLAS package is used you may see compiler warnings. The BLAS routines dgemm,
dgemv, dger, dtrsm, dtrsv, dscal and their corresponding complex versions are used. Header files
are not provided for the Fortran BLAS. You may safely ignore all of these warnings.
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I highly recommend the recent BLAS by Goto and van de Geijn [25]. Using this BLAS increased
the performance of UMFPACK by up to 50% on a Dell Latitude C840 laptop (2GHz Pentium 4M,
512K L2 cache, 1GB main memory). The peak performance of umfpack di numeric with Goto
and van de Geijn’s BLAS is 1.6 Gflops on this computer. In MATLAB, the peak performance of
UMFPACK on a dense matrix (stored in sparse format) is 900 Mflops, as compared to 1 Gflop for
x = A\b when A is stored as a regular full matrix.

When you compile your program that uses the C-callable UMFPACK library, you need to link
your program with all libraries (UMFPACK/Lib/libumfpack.a and AMD/Lib/libamd.a, and unless
you compile with -DNCHOLMOD you also must link with CHOLMOD/Lib/libcholmod.a,
COLAMD/Lib/libcolamd.a, CCOLAMD/Lib/libccolamd.a, CAMD/Lib/libcamd.a, and
metis-4.0/libmetis.a). You need to tell your compiler to look in the directories UMFPACK/Include
and AMD/Include for include files. See UMFPACK/Demo/Makefile for an example. You do not need
to directly include any AMD include files in your program, unless you directly call AMD routines.
You only need the

#include "umfpack.h"

statement, as described in Section 6.
If you would like to compile both 32-bit and 64-bit versions of the libraries, you will need to do

it in two steps. Modify your SuiteSparse config/SuiteSparse config.mk file, and select the 32-
bit option. Type make in the UMFPACK directory, which creates the UMFPACK/Lib/libumfpack.a and
AMD/Lib/libamd.a libraries. Rename those two files. Edit your SuiteSparse config/SuiteSparse config.mk

file and select the 64-bit option. Type make purge, and then make, and you will create the 64-bit
libraries. You can use the same umfpack.h include file for both 32-bit and 64-bit versions. Simply
link your program with the appropriate 32-bit or 64-bit compiled version of the UMFPACK and
AMD libraries.

Type make hb in the UMFPACK/Demo/HB directory to compile and run a C program that reads
in and factorizes Harwell/Boeing matrices. Note that this uses a stand-alone Fortran program to
read in the Fortran-formatted Harwell/Boeing matrices and write them to a file which can be read
by a C program.

The umf multicompile.c file has been added to assist in the compilation of UMFPACK in
Microsoft Visual Studio, for Windows.

8.2 Installing the MATLAB interface

Simply type umfpack make in MATLAB while in the UMFPACK/MATLAB directory. You can also type
amd make in the AMD/MATLAB directory to compile the stand-alone AMD mexFunction (this is not
required to compile the UMFPACK mexFunction).

If you are using Windows and the lcc compiler bundled with MATLAB 6.1, then you may need
to copy the UMFPACK\MATLAB\lcc lib\libmwlapack.lib file into the <matlab>\extern\lib\win32\lcc\
directory. Next, type mex -setup at the MATLAB prompt, and ask MATLAB to select the lcc

compiler. MATLAB 6.1 has built-in BLAS, but in that version of MATLAB the BLAS cannot be
accessed by a mexFunction compiled by lcc without first copying this file to the location listed
above. If you have MATLAB 6.5 or later, you can probably skip this step.
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8.3 Installing the Fortran interface

Once the 32-bit C-callable UMFPACK library is compiled, you can also compile the Fortran in-
terface, by typing make fortran. This will create the umf4hb program, test it, and compare the
output with the file umf4hb.out in the distribution. If you compiled UMFPACK in 64-bit mode,
you need to use make fortran64 instead, which compiles the umf4hb64 program and compares its
output with the file umf4hb64.out. Refer to the comments in the Demo/umf4 f77wrapper.c file
for more details.

This interface is highly non-portable, since it depends on how C and Fortran are inter-
faced. Because of this issue, the interface is included in the Demo directory, and not as a pri-
mary part of the UMFPACK library. The interface routines are not included in the compiled
UMFPACK/Lib/libumfpack.a library, but left as stand-alone compiled files (umf4 f77wrapper.o

and umf4 f77wrapper64.o in the Demo directory). You may need to modify the interface routines
in the file umf4 f77wrapper.c if you are using compilers for which this interface has not been
tested.

In particular, I was not able to get C and Fortran to work together on the Mac (Snow Leopard).

8.4 Known Issues

The Microsoft C or C++ compilers on a Pentium badly break the IEEE 754 standard, and do not
treat NaN’s properly. According to IEEE 754, the expression (x != x) is supposed to be true if
and only if x is NaN. For non-compliant compilers in Windows that expression is always false, and
another test must be used: (x < x) is true if and only if x is NaN. For compliant compilers, (x
< x) is always false, for any value of x (including NaN). To cover both cases, UMFPACK when
running under Microsoft Windows defines the following macro, which is true if and only if x is NaN,
regardless of whether your compiler is compliant or not:

#define SCALAR_IS_NAN(x) (((x) != (x)) || ((x) < (x)))

If your compiler breaks this test, then UMFPACK will fail catastrophically if it encounters a
NaN. You will not just see NaN’s in your output; UMFPACK will probably crash with a segmen-
tation fault. In that case, you might try to see if the common (but non-ANSI C) routine isnan is
available, and modify the macro SCALAR IS NAN in umf version.h accordingly. The simpler (and
IEEE 754-compliant) test (x != x) is always true with Linux on a PC, and on every Unix compiler
I have tested.

Some compilers will complain about the Fortran BLAS being defined implicitly. C prototypes
for the BLAS are not used, except the C-BLAS. Some compilers will complain about unrecognized
#pragma’s. You may safely ignore all of these warnings.

9 Future work

Here are a few features that are not in the current version of UMFPACK, in no particular order.
They may appear in a future release of UMFPACK. If you are interested, let me know and I could
consider including them:

1. Remove the restriction that the column-oriented form be given with sorted columns. This
has already been done in AMD Version 2.0.
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2. Future versions may have different default Control parameters. Future versions may return
more statistics in the Info array, and they may use more entries in the Control array.
These two arrays will probably become larger, since there are very few unused entries. If
they change in size, the constants UMFPACK CONTROL and UMFPACK INFO defined in umfpack.h

will be changed to reflect their new size. Your C program should use these constants when
declaring the size of these two arrays. Do not define them as Control [20] and Info [90].

3. Forward/back solvers for the conventional row or column-form data structure for L and U
(the output of umfpack * di get numeric). This would enable a separate solver that could be
used to write a MATLAB mexFunction x = lu refine (A, b, L, U, P, Q, R) that gives
MATLAB access to the iterative refinement algorithm with sparse backward error analysis. It
would also be easier to handle sparse right-hand sides in this data structure, and end up with
good asymptotic run-time in this case (particularly for Lx = b; see [24]). See also CSparse
and CXSparse for software for handling sparse right-hand sides.

4. Complex absolute value computations could be based on FDLIBM (see
http://www.netlib.org/fdlibm), using the hypot(x,y) routine.

5. When using iterative refinement, the residual Ax− b could be returned by umfpack solve.

6. The solve routines could handle multiple right-hand sides, and sparse right-hand sides. See
umfpack solve for the MATLAB version of this feature. See also CSparse and CXSparse for
software for handling sparse right-hand sides.

7. An option to redirect the error and diagnostic output.

8. Permutation to block-triangular-form [17] for the C-callable interface. There are two routines
in the ACM Collected Algorithms (529 and 575) [14, 16] that could be translated from Fortran
to C and included in UMFPACK. This would result in better performance for matrices from
circuit simulation and chemical process engineering. See umfpack btf.m for the MATLAB
version of this feature. KLU includes this feature. See also cs dmperm in CSparse and
CXSparse.

9. The ability to use user-provided work arrays, so that malloc, free, and realloc realloc are
not called. The umfpack * wsolve routine is one example.

10. A method that takes time proportional to the number of nonzeros in A to compute the
symbolic factorization [23]. This would improve the performance of the symmetric strategy,
and the unsymmetric strategy when dense rows are present. The current method takes time
proportional to the number of nonzeros in the upper bound of U. The method used in
UMFPACK exploits super-columns, however, so this bound is rarely reached. See cs counts

in CSparse and CXSparse, and cholmod analyze in CHOLMOD.

11. Other basic sparse matrix operations, such as sparse matrix multiplication, could be included.

12. A more complete Fortran interface.

13. A C++ interface.

14. A parallel version using MPI. This would require a large amount of effort.
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10 The primary UMFPACK routines

The include files are the same for all four versions of UMFPACK. The generic integer type is Int,
which is an int or SuiteSparse long, depending on which version of UMFPACK you are using.

10.1 umfpack * symbolic
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10.2 umfpack * numeric
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10.3 umfpack * solve
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10.4 umfpack * free symbolic
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10.5 umfpack * free numeric
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11 Alternative routines

11.1 umfpack * defaults
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11.2 umfpack * qsymbolic and umfpack * fsymbolic
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11.3 umfpack * wsolve
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12 Matrix manipulation routines

12.1 umfpack * col to triplet
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12.2 umfpack * triplet to col
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12.3 umfpack * transpose
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12.4 umfpack * scale
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13 Getting the contents of opaque objects

13.1 umfpack * get lunz
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13.2 umfpack * get numeric
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13.3 umfpack * get symbolic
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13.4 umfpack * save numeric
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13.5 umfpack * load numeric
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13.6 umfpack * save symbolic
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13.7 umfpack * load symbolic
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13.8 umfpack * get determinant
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14 Reporting routines

14.1 umfpack * report status
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14.2 umfpack * report control
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14.3 umfpack * report info

58



14.4 umfpack * report matrix
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14.5 umfpack * report numeric
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14.6 umfpack * report perm
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14.7 umfpack * report symbolic

62



14.8 umfpack * report triplet
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14.9 umfpack * report vector
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15 Utility routines

15.1 umfpack timer
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15.2 umfpack tic and umfpack toc
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